Чем phenom отличается от athlon. Подписка на новости

  • Дата: 01.02.2024

Насколько важен кэш L3 для процессоров AMD?

Действительно, имеет смысл оснащать многоядерные процессоры выделенной памятью, которая будет использоваться совместно всеми доступными ядрами. В данной роли быстрый кэш третьего уровня (L3) может существенно ускорить доступ к данным, которые запрашиваются чаще всего. Тогда ядрам, если существует такая возможность, не придётся обращаться к медленной основной памяти (ОЗУ, RAM).

По крайней мере, в теории. Недавно AMD анонсировала процессор Athlon II X4 , представляющий собой модель Phenom II X4 без кэша L3, намекая на то, что он не такой и необходимый. Мы решили напрямую сравнить два процессора (с кэшем L3 и без), чтобы проверить, как кэш влияет на производительность.


Как работает кэш?

Перед тем, как мы углубимся в тесты, важно понять некоторые основы. Принцип работы кэша довольно прост. Кэш буферизует данные как можно ближе к вычислительным ядрам процессора, чтобы снизить запросы CPU в более отдалённую и медленную память. У современных настольных платформ иерархия кэша включает целых три уровня, которые предваряют доступ к оперативной памяти. Причём кэши второго и, в частности, третьего уровней служат не только для буферизации данных. Их цель заключается в предотвращении перегрузки шины процессора, когда ядрам необходимо обменяться информацией.

Попадания и промахи

Эффективность архитектуры кэшей измеряется процентом попаданий. Запросы данных, которые могут быть удовлетворены кэшем, считаются попаданиями. Если данный кэш не содержит нужные данные, то запрос передаётся дальше по конвейеру памяти, и засчитывается промах. Конечно, промахи приводят к большему времени, которое требуется для получения информации. В результате в вычислительном конвейере появляются "пузырьки" (простои) и задержки. Попадания, напротив, позволяют поддержать максимальную производительность.

Запись в кэш, эксклюзивность, когерентность

Политики замещения диктуют, как в кэше освобождается место под новые записи. Поскольку данные, записываемые в кэш, рано или поздно должны появиться в основной памяти, системы могут делать это одновременно с записью в кэш (write-through) или могут маркировать данные области как "грязные" (write-back), а выполнять запись в память тогда, когда она будет вытесняться из кэша.

Данные в нескольких уровнях кэша могут храниться эксклюзивно, то есть без избыточности. Тогда вы не найдёте одинаковых строчек данных в двух разных иерархиях кэша. Либо кэши могут работать инклюзивно, то есть нижние уровни кэша гарантированно содержат данные, присутствующие в верхних уровнях кэша (ближе к процессорному ядру). У AMD Phenom используются эксклюзивный кэш L3, а Intel следует стратегии инклюзивного кэша. Протоколы когерентности следят за целостностью и актуальностью данных между разными ядрами, уровнями кэшей и даже процессорами.

Объём кэша

Больший по объёму кэш может содержать больше данных, но при этом наблюдается тенденция увеличения задержек. Кроме того, большой по объёму кэш потребляет немалое количество транзисторов процессора, поэтому важно находить баланс между "бюджетом" транзисторов, размером кристалла, энергопотреблением и производительностью/задержками.

Ассоциативность

Записи в оперативной памяти могут привязываться к кэшу напрямую (direct-mapped), то есть для копии данных из оперативной памяти существует только одна позиция в кэше, либо они могут быть ассоциативны в n-степени (n-way associative), то есть существует n возможных расположений в кэше, где могут храниться эти данные. Более высокая степень ассоциативности (вплоть до полностью ассоциативных кэшей) обеспечивает наилучшую гибкость кэширования, поскольку существующие данные в кэше не нужно переписывать. Другими словами, высокая n-степень ассоциативности гарантирует более высокий процент попаданий, но при этом увеличивается задержка, поскольку требуется больше времени на проверку всех этих ассоциаций для попадания. Как правило, наибольшая степень ассоциации разумна для последнего уровня кэширования, поскольку там доступна максимальная ёмкость, а поиск данных за пределами этого кэша приведёт к обращению процессора к медленной оперативной памяти.

Приведём несколько примеров: у Core i5 и i7 используется 32 кбайт кэша L1 с 8-way ассоциативностью для данных и 32 кбайт кэша L1 с 4-way для инструкций. Понятно желание Intel, чтобы инструкции были доступны быстрее, а у кэша L1 для данных был максимальный процент попаданий. Кэш L2 у процессоров Intel обладает 8-way ассоциативностью, а кэш L3 у Intel ещё "умнее", поскольку в нём реализована 16-way ассоциативность для максимизации попаданий.

Однако AMD следует другой стратегии с процессорами Phenom II X4, где используется кэш L1 с 2-way ассоциативностью для снижения задержек. Чтобы компенсировать возможные промахи ёмкость кэша была увеличена в два раза: 64 кбайт для данных и 64 кбайт для инструкций. Кэш L2 имеет 8-way ассоциативность, как и у дизайна Intel, но кэш L3 у AMD работает с 48-way ассоциативностью. Но решение выбора той или иной архитектуры кэша нельзя оценивать без рассмотрения всей архитектуры CPU. Вполне естественно, что практическое значение имеют результаты тестов, и нашей целью как раз была практическая проверка всей этой сложной многоуровневой структуры кэширования.

Каждый современный процессор имеет выделенный кэш, которых хранит инструкции и данные процессора, готовые к использованию практически мгновенно. Этот уровень обычно называют первым уровнем кэширования или L1, впервые такой кэш появился у процессоров 486DX. Недавно процессоры AMD стали стандартно использовать по 64 кбайт кэша L1 на ядро (для данных и инструкций), а процессоры Intel используют по 32 кбайт кэша L1 на ядро (тоже для данных и инструкций)


Кэш первого уровня впервые появился на процессорах 486DX, после чего он стал составной функцией всех современных CPU.

Кэш второго уровня (L2) появился на всех процессорах после выхода Pentium III, хотя первые его реализации на упаковке были в процессоре Pentium Pro (но не на кристалле). Современные процессоры оснащаются до 6 Мбайт кэш-памяти L2 на кристалле. Как правило, такой объём разделяется между двумя ядрами на процессоре Intel Core 2 Duo, например. Обычные же конфигурации L2 предусматривают 512 кбайт или 1 Мбайт кэша на ядро. Процессоры с меньшим объёмом кэша L2, как правило, относятся к нижнему ценовому уровню. Ниже представлена схема ранних реализаций кэша L2.


У Pentium Pro кэш L2 находился в упаковке процессора. У последовавших поколений Pentium III и Athlon кэш L2 был реализован через отдельные чипы SRAM, что было в то время очень распространено (1998, 1999).


Последовавшее объявление техпроцесса до 180 нм позволило производителям, наконец, интегрировать кэш L2 на кристалл процессора.



Первые двуядерные процессоры просто использовали существующие дизайны, когда в упаковку устанавливалось два кристалла. AMD представила двуядерный процессор на монолитном кристалле, добавила контроллер памяти и коммутатор, а Intel для своего первого двуядерного процессора просто собрала два одноядерных кристалла в одной упаковке.



Впервые кэш L2 стал использоваться совместно двумя вычислительными ядрами на процессорах Core 2 Duo. AMD пошла дальше и создала свой первый четырёхъядерный Phenom "с нуля", а Intel для своего первого четырёхъядерного процессора вновь использовала пару кристаллов, на этот раз уже два двуядерных кристалла Core 2, чтобы снизить расходы.

Кэш третьего уровня существовал ещё с первых дней процессора Alpha 21165 (96 кбайт, процессоры представлены в 1995) или IBM Power 4 (256 кбайт, 2001). Однако в архитектурах на основе x86 кэш L3 впервые появился вместе с моделями Intel Itanium 2, Pentium 4 Extreme (Gallatin, оба процессора в 2003 году) и Xeon MP (2006).

Первые реализации давали просто ещё один уровень в иерархии кэша, хотя современные архитектуры используют кэш L3 как большой и общий буфер для обмена данными между ядрами в многоядерных процессорах. Это подчёркивает и высокая n-степень ассоциативности. Лучше поискать данные чуть дольше в кэше, чем получить ситуацию, когда несколько ядер используют очень медленный доступ к основной оперативной памяти. AMD впервые представила кэш L3 на процессоре для настольных ПК вместе с уже упоминавшейся линейкой Phenom. 65-нм Phenom X4 содержал 2 Мбайт общего кэша L3, а современные 45-нм Phenom II X4 имеют уже 6 Мбайт общего кэша L3. У процессоров Intel Core i7 и i5 используется 8 Мбайт кэша L3.


Современные четырёхъядерные процессоры имеют выделенные кэши L1 и L2 для каждого ядра, а также большой кэш L3, являющийся общим для всех ядер. Общиё кэш L3 также позволяет обмениваться данными, над которыми ядра могут работать параллельно.

В нашем сравнении участвовали два разных процессора AMD, которые как раз и помогут сравнить преимущества от дополнительного кэша L3 у четырёхъядерного процессора.


Нажмите на картинку для увеличения.

С одной стороны у нас был новый AMD Athlon II X4 620 - четырёхъядерный процессор AMD начального уровня. Кстати Athlon II X4 620 стал первым четырёхъядерным процессором, который доступен по цене $100 (к сожалению, не в России), так что мы получаем за такую цену новый уровень производительности. Впрочем, не нужно забывать, что впечатляющая производительность 620 касается только серьёзных многопоточных приложений, да и то не всегда, поскольку Athlon II X4 лишён кэша L3 совсем. Для сравнения мы взяли процессор Phenom II X4 965.


Нажмите на картинку для увеличения.

Позиционирование двух продуктов совершенно разное. Phenom II является текущим лидером AMD в топовой линейке Black Edition, а "младший" Athlon II X4 нацелен на рынок начального уровня.

Впрочем, по архитектуре процессоры очень схожи. Ядра Athlon II X4, включая их кэш L1 и L2, идентичны ядрам Phenom. AMD даже не поменяла ассоциативность кэша. Единственным настоящим изменением является то, что AMD выключила кэш Athlon II X4 у процессоров, где с кэшем L3 возникали проблемы валидации. (Это верно только для ранних Athlon II X4. В будущем всё больше процессоров будут базироваться на совершенно другом и более экономически выгодном кристалле.)

Мы смогли сделать сравнение 1:1 путём снижения тактовой частоты Phenom II X4 с 3,4 ГГц до всего 2,6 ГГц - это как раз штатная тактовая частота Athlon II X4 620.

Тестовая конфигурация

Аппаратное обеспечение для тестов производительности
Материнская плата (Socket AM3) Gigabyte MA790FXT-UD5P (Rev. 1.0), чипсет: AMD 790GX, SB750, BIOS: 5c (04/01/2009)
Память DDR3 (два канала) 2 x 2 Гбайт DDR3-1600 (Corsair CM3X2G1600C9DHX)
2 x 1 Гбайт DDR3-1600 (Crucial BL12864BA1608.8SFB) в режиме DDR3-1066
Общее аппаратное обеспечение
CPU AMD I AMD Phenom II X4 965 (45 нм, 3,4 ГГц, 4 x 512 кбайт кэш L2 и 6 Мбайт кэш L3, TDP 140 Вт, Rev. C2)
CPU AMD II AMD Athlon II X4 620 (45 нм, 2,6 ГГц, 4 x 512 кбайт кэш L2, TDP 95 Вт, Rev. C2)
Видеокарта Zotac GeForce GTX 260², GPU: GeForce GTX 260 (576 МГц), видеопамять: 896 Мбайт DDR3 (1998 МГц), потоковые процессоры: 216, частота шейдеров: 1242 МГц
Жёсткий диск Western Digital VelociRaptor, 300 Гбайт (WD3000HLFS), 10 000 об/мин, SATA/300, кэш 16 Мбайт
Привод Blu-Ray LG GGW-H20L, SATA/150
Блок питания PC Power & Cooling, Silencer 750EPS12V 750 ВТ
Системное ПО и драйверы
Операционная система Windows Vista Enterprise Version 6.0 x64, Service Pack 2 (Build 6000)
Драйверы чипсета AMD Catalyst Control Center 9.4

Тесты и настройки

Far Cry 2 Version: 1.0.1
Far Cry 2 Benchmark Tool
Video Mode: 1280x800
Direct3D 9
Overall Quality: Medium
Bloom activated
HDR off
Demo: Ranch Small
GTA IV Version: 1.0.3
Video Mode: 1280x1024
- 1280x1024
- Aspect Ratio: Auto
- All options: Medium
- View Distance: 30
- Detail Distance: 100
- Vehicle Density: 100
- Shadow Density: 16
- Definition: On
- Vsync: Off
In-game Benchmark
Left 4 Dead Version: 1.0.0.5
Video Mode: 1280x800
Game Settings
- Anti Aliasing none
- Filtering Trilinear
- Wait for vertical sync disabled
- Shader Detail Medium
- Effect Detail Medium
- Model/Texture Detail Medium
Demo: THG Demo 1
Кодирование аудио и видео
iTunes Version: 8.1.0.52
Audio CD ("Terminator II" SE), 53 min.
Convert to AAC audio format
Lame MP3 Version 3.98
Audio CD "Terminator II SE", 53 min
convert WAV to MP3 audio format
Command: -b 160 --nores (160 Kbps)
TMPEG 4.6 Version: 4.6.3.268
Video: Terminator 2 SE DVD (720x576, 16:9) 5 Minutes
Audio: Dolby Digital, 48000 Hz, 6-Kanal, English
Advanced Acoustic Engine MP3 Encoder (160 Kbps, 44.1 kHz)
DivX 6.8.5 Version: 6.8.5
== Main Menu ==
default
== Codec Menu ==
Encoding mode: Insane Quality
Enhanced multithreading
Enabled using SSE4
Quarter-pixel search
== Video Menu ==
Quantization: MPEG-2
XviD 1.2.1 Version: 1.2.1
Other Options / Encoder Menu -
Display encoding status = off
Mainconcept Reference 1.6.1 Version: 1.6.1
MPEG2 to MPEG2 (H.264)
MainConcept H.264/AVC Codec
28 sec HDTV 1920x1080 (MPEG2)
Audio:
MPEG2 (44.1 kHz, 2 Channel, 16 Bit, 224 kbps)
Codec: H.264
Mode: PAL (25 FPS)
Profile: Settings for eight threads
Adobe Premiere pro CS4 Version: 4.0
WMV 1920x1080 (39 sec)
Export: Adobe Media Encoder
== Video ==
H.264 Blu-ray
1440x1080i 25 High Quality
Encoding Passes: one
Bitrate Mode: VBR
Frame: 1440x1080
Frame Rate: 25
== Audio ==
PCM Audio, 48 kHz, Stereo
Encoding Passes: one
Grisoft AVG Anti Virus 8 Version: 8.5.287
Virus base: 270.12.16/2094
Benchmark
Scan: some compressed ZIP and RAR archives
Winrar 3.9 Version 3.90 x64 BETA 1
Compression = Best
Benchmark: THG-Workload
Winzip 12 Version 12.0 (8252)
WinZIP Commandline Version 3
Compression = Best
Dictionary = 4096 KB
Benchmark: THG-Workload
Autodesk 3D Studio Max 2009 Version: 9 x64
Rendering Dragon Image
Resolution: 1920 x 1280 (frame 1-5)
Adobe Photoshop CS4 (64-Bit) Version: 11
Filtering a 16MB TIF (15000x7266)
Filters:
Radial Blur (Amount: 10; Method: zoom; Quality: good)
Shape Blur (Radius: 46 px; custom shape: Trademark symbol)
Median (Radius: 1px)
Polar Coordinates (Rectangular to Polar)
Adobe Acrobat 9 professional Version: 9.0.0 (Extended)
== Printing Preferenced Menu ==
Default Settings: Standard
== Adobe PDF Security - Edit Menu ==
Encrypt all documents (128 bit RC4)
Open Password: 123
Permissions Password: 321
Microsoft PowerPoint 2007 Version: 2007 SP2
PPT to PDF
Powerpoint Document (115 Pages)
Adobe PDF-Printer
Deep Fritz 11 Version: 11
Fritz Chess Benchmark Version 4.2
Синтетические тесты
Version: 1.02
Options: Performance
Graphics Test 1
Graphics Test 2
CPU Test 1
CPU Test 2
PCMark Vantage Version: 1.00
PCMark Benchmark
Memories Benchmark
SiSoftware Sandra 2009 Version: 2009 SP3
Processor Arithmetic, Cryptography, Memory Bandwith
Benchmark Results: Sandra 2009, PCMark Vantage

Замечания по эффективности

Обычно мы измеряем энергопотребление в режиме бездействия и под максимальной нагрузкой, после чего оцениваем эффективность системы, отслеживая энергию, которая требуется на выполнение определённой нагрузки (как правило, прогона PCMark Vantage). Это позволяет нам рассчитать эффективность как соотношение производительности на ватт. Однако в данном случае нам пришлось пойти на несколько шагов, которые не характерны для реальных условий. Мы снизили тактовую частоту Phenom, и нам пришлось отключить Cool’n’Quiet, чтобы Phenom II X4 965 смог работать на частоте 2,6 ГГц вместо штатной частоты 3,4 ГГц. Поскольку самый медленный Phenom II X4 начинается с частоты 3,0 ГГц, вряд ли кто-то будет работать с процессором на низких тактовых частотах. Кроме того, мы снизили частоту памяти Phenom II до DDR3-1066, чтобы соответствовать спецификациям AMD для Athlon II X4.

Затем мы получили заметное преимущество по энергопотреблению для процессора без кэша L3. Сам по себе кэш занимает около трети всех транзисторов процессора. Это становится очевидным и по данным энергопотребления. AMD заявляет для Phenom II тепловой пакет от 95 до 140 Вт, в то время как Athlon II X4 работает на 95 Вт. Пиковое энергопотребление нашей тестовой системы с процессором Phenom II X4 965 на 3,4 ГГц достигало 226 Вт, в то время как у 2,6-ГГц Athlon II X4 оно составило, максимум, 170 Вт.

В режиме бездействия мы наблюдаем очень близкие результаты. Мы получили 84 Вт для Athlon II X4 620 и 85 Вт для той же системы с процессором Phenom II X4 965. В данных случаях технология Cool’n’Quiet была активной, поэтому оба процессора снижали свою частоту до 800 МГц, а также понижали напряжение. Поскольку большая часть блоков процессоров не работает и выключается, то энергопотребление в режиме бездействия у двух наших процессоров очень близко.

Результаты тестов




Мы наблюдаем 5% преимущество в тесте 3DMark Vantage CPU, но по общему результату и по тесту GPU мы не видим выигрыша вообще. Давайте посмотрим, какова будет производительность в играх.


Частота кадров увеличилась на 8% в Far Cry со средними настройками детализации, когда мы заменили четырёхъядерный процессор Athlon II X4 начального уровня на Phenom II X4 с такой же тактовой частотой.

Преимущество в GTA IV 5,7% - тоже не очень много. Кэш L3 влияет на производительность довольно слабо.

В Left 4 Dead результаты совершенно иные, процессор с 6 Мбайт кэша L3 даёт почти на 20% большую частоту кадров.



Создание PDF с помощью Adobe Acrobat 9 из документа Microsoft PowerPoint не слишком выигрывает от кэша L3.


Архиватор WinRAR очень чувствителен к производительности памяти, поэтому ему требуется на 16% меньше времени для выполнения работы.

А вот WinZip не так критично отнёсся к отсутствию кэша L3. Работа с кэшем L3 выполнилась на 9,2% быстрее.


Скорость выполнения фильтров в Photoshop CS4 от наличия кэша L3 у Phenom II выигрывает мало. Разница в три секунды мизерная.


iTunes нужна более высокая тактовая частота для увеличения производительности перекодирования аудио. Поэтому мизерная разница между процессорами с кэшем L3 и без него не стала для нас сюрпризом.

Здесь результаты вообще одинаковые, что неудивительно.

DivX перекодирует фильм из формата MPEG-2 на Phenom II X4 лишь чуточку быстрее.

Кодирование Xvid выигрывает чуть больше, хотя данная операция выполняется существенно дольше, чем преобразование ролика MPEG-2 в формат DivX.

MainConcept получает производительность от числа ядер и их тактовой частоты. Мы не наблюдаем заметного преимущества от наличия кэша L3.

Мы решили создать индекс производительности, который учитывал бы результаты всех тестов. Поскольку приложения, интенсивно использующие CPU, требуют больше всего производительности, мы оценили их вес как 50%, игры мы учли как 25%, результаты PCMark Vantage и 3DMark Vantage получили вес по 12,5% каждый. В итоге мы получили 5,8% преимущество по производительности Phenom II X4 по сравнению с Athlon II X4 или 5,5% падение производительности, если вы возьмёте за основу Phenom II X4. Конечно, у вас могут быть другие приоритеты использования ПК, поэтому важно упомянуть минимальную и максимальную разницу. В некоторых тестах мы получили преимущество от наличия кэша L3 в 20%, а в некоторых тестах процессоры дают абсолютно идентичную производительность, несмотря на наличие/отсутствие кэша L3. В общем, как нам кажется, лучше ориентироваться на разницу в производительности от 5% до 6%, которую мы рассчитали по результатам всех тестов.

Заключение

Сравнение цен и производительности явно говорит о том, что "бюджетным" пользователям вообще не стоит смотреть в сторону Phenom II X4. Процессор Phenom II X4 945 (3,0 ГГц) продаётся по цене от $170 (), а новый процессор Athlon II X4 за $100 () даёт очень близкую производительность при прочих равных. Модели AM2+ процессоров Phenom II X4 могут продаваться дешевле, но они не дают поддержки памяти DDR3.

В целом, основная разница по производительности между Athlon II X4 и Phenom II X4 связана с тактовой частотой. Простое увеличение тактовой частоты Athlon II X4 на 200 МГц позволит ему сравняться по производительности с Phenom II X4, несмотря на наличие 6 Мбайт кэша L3 у последнего. Зная это, вы наверняка поймёте, почему на рынке не будет процессоров Athlon II, которые по частоте будут равняться (или даже превышать) модели Phenom II.

Конечно, нужно учитывать разные сегменты рынка, которые мы в нашей статье довольно сильно размыли. Phenom II - процессор для верхнего сегмента массового рынка, который продаётся по цене от $150 до $250, а Athlon II X4 нацеливается на "бюджетную" аудиторию, готовую выложить за CPU не больше $100. В любом случае, вполне очевидно, что Athlon II X4 обеспечивает прекрасное соотношение производительность/цена, особенно для тех пользователей, кто планирует разогнать процессор.

Наконец, следует отметить, что кэш-память L3 необходима для достижения высоких уровней производительности. На частоте CPU 2,6 ГГц это может быть и не так очевидно, но на 3 ГГц и выше мы наблюдаем, что производительность Phenom II масштабируется намного лучше, чем у Athlon II X4.

Старое уцененное против нового дешевого

Мы уже не раз упоминали устроенную компанией AMD распродажу процессоров предыдущих поколений. Настолько «не раз», что возник повод задуматься: а почему это у нас нет точных результатов ни одного из двух Phenom II X4, которые в сложившихся условиях выглядят чуть ли не лучшими предложениями на рынке бюджетной продукции? Да, конечно, мы уже тестировали крайние в семействе 910 и 980, а прикинуть производительность любой промежуточной модели (в т. ч. и 955 или 965) несложно при помощи аппроксимации, однако многим читателям заниматься ею попросту лень. Да и потом: аппроксимация по двум точкам - вещь крайне ненадежная. Желательно добавить третью, что для пары семейств Athlon II мы недавно сделали , а теперь займемся Phenom II.

Но совсем новых процессоров AMD в тестировании не будет. А вот у Intel мы возьмем пару появившихся не так давно моделей, тоже, впрочем, входящих в давно изученные семейства. Словом, сегодня у нас на повестке дня обычное рутинное тестирование пяти процессоров. Не с целью каких-либо научных открытий, а для уточнения уже имеющейся информации.

Конфигурация тестовых стендов

Процессор Phenom II X4 955 Phenom II X4 960T Phenom II X6 1075T
Название ядра Deneb Zosma Thuban
Технология пр-ва 45 нм 45 нм 45 нм
Частота ядра std/max, ГГц 3,2 3,0/3,4 3,0/3,5
4/4 4/4 6/6
Кэш L1 (сумм.), I/D, КБ 256/256 256/256 384/384
Кэш L2, КБ 4×512 4×512 6×512
Кэш L3, МиБ 6 6 6
Частота UnCore, ГГц 2 2 2
Оперативная память 2×DDR3-1333 2×DDR3-1333 2×DDR3-1333
Видеоядро - - -
Сокет AM3 AM3 AM3
TDP 125 Вт 95 Вт 125 Вт
Цена Н/Д(0) Н/Д(0) Н/Д(0)

Итак, три процессора AMD Phenom II. По поводу 955 все сказано выше - его оптовая стоимость с осени составляет всего $81, так что до исчерпания старых запасов этот процессор весьма конкурентоспособен. Точнее, не слишком конкурентоспособны прочие модели в этом ценовом классе, за исключением, разве что, не менее «распродажного» A6-3670K, где более слабая процессорная часть компенсируется хорошей графикой. Но вот покупателю дискретной видеокарты оная не интересна, что делает Phenom II X4 955 практически безальтернативным в рамках ассортимента AMD. У Intel же за эти деньги только двухъядерные Pentium - старшие модели, конечно, но даже старший Pentium - это всего лишь Pentium: двух потоков вычислений многим современным приложениям (вплоть до игровых) уже недостаточно. А вот более четырех - не нужно.

Еще один процессор, а именно Phenom II X6 1075T, нужен нам в первую очередь по названной выше причине (но есть и другие, о которых ниже) - это третья точка аппроксимации для Phenom II X6. А Phenom II X4 960T интересен сам по себе. Процессор основан на, фактически, том же Thuban, но два ядра в Zosma изначально заблокированы. В результате эта ОЕМ-модель в свое время была крайне популярна среди любителей рискнуть: в случае успеха получался более дешевый Phenom II X6, чем если покупать изначально таковой. Правда, вероятность успеха была далека от 100%, в розницу этот процессор проникал в небольших количествах, да и недорогие шестиядерники (типа 1035Т/1055Т) идею сэкономить сильно подрывали - зачем рисковать из-за каких-то 50 долларов? Справедливости ради, наш экземпляр разблокировался без каких-либо проблем - хватило изменения одного пункта в UEFI Setup. Но что проблем совсем никаких - мы все же утверждать не будем: процессор в таком режиме не тестировался. Да это и не слишком интересно: разблокировка пары ядер превращает 960Т в практически полный аналог 1075Т - только частота в турбо-режиме на 100 МГц ниже. А вот его производительность в штатном режиме нам очень интересна: априори можно предположить, что при загрузке всех четырех ядер она должна быть чуть ниже, чем у 955, а в малопоточных приложениях - на уровне 965. Во всяком случае, так соотносятся частоты этих процессоров. Посмотрим, насколько практика подтверждает теорию. А сама по себе шестиядерность у AMD практическое значение теперь имеет нечасто, будь она врожденная или «разлоченная»: процессоры на Thuban в последнее время в ассортименте AMD присутствуют лишь номинально, и найти их в рознице крайне сложно. Да и модельный ряд давно уже не обновлялся, так что имея результаты трех моделей (ранее протестированные 1035Т и 1100Т и сегодняшний 1075Т), можно с достаточно высокой точностью определить производительность любой другой при помощи аппроксимации по тактовым частотам.

Процессор Pentium G2120 Core i3-3220 Core i5-3330
Название ядра Ivy Bridge DC Ivy Bridge DC Ivy Bridge QC
Технология пр-ва 22 нм 22 нм 22 нм
Частота ядра std/max, ГГц 3,1 3,3 3,0/3,2
Кол-во ядер/потоков вычисления 2/2 2/4 4/4
Кэш L1 (сумм.), I/D, КБ 64/64 64/64 128/128
Кэш L2, КБ 2×256 2×256 4×256
Кэш L3, МиБ 3 3 6
Частота UnCore, ГГц 3,1 3,3 3,0/3,2
Оперативная память 2×DDR3-1600 2×DDR3-1600 2×DDR3-1600
Видеоядро HDG HDG 2500 HDG 2500
Сокет LGA1155 LGA1155 LGA1155
TDP 55 Вт 55 Вт 77 Вт
Цена Н/Д() $149() $219()

Изначально мы не планировали вносить в список сегодняшних участников ранее протестированные процессоры, но для Pentium G2120 было решено сделать исключение. По двум причинам. Во-первых, два других процессора Intel в сегодняшних условиях не являются непосредственными конкурентами Phenom II X4 955 по цене, а вот Pentium - как-то может. Во-вторых, на данный момент это самый младший Ivy Bridge «безусловно», так что любопытно сравнить его с младшим Core i3 и младшим же Core i5 на той же архитектуре. Что касается i3-3220, то ничего особенного в нем нет - его старшего братца (3240) мы уже тестировали , а различаются эти процессоры только тактовой частотой, и всего на 100 МГц.

Выпуск же Core i5-3330 оказался несколько неожиданным. Казалось бы, нижняя планка цены еще летом четко зафиксировалась на отметке $184 оптом - когда на ней Core i5-3470 заменил более старый i5-3450 . И тут вдруг компания Intel выпускает аж три более дешевых Core i5! Модель 3350P особых вопросов не вызывает - как видно по индексу, видеоядро здесь заблокировано. Скорее всего, это просто утилизация «полного брака» в области видеочасти. Зато всего $177 долларов оптом что в ОЕМ-поставках, что в розничной упаковке, плюс TDP 69 Вт - прекрасное предложение для тех, кто собирается использовать дискретную графику. То есть в первую очередь, естественно, для мелких сборщиков готовых систем, но и индивидуальным покупателям 18 долларов (разница между «коробочными» версиями 3350Р и 3470) лишними не будут. С 3330S тоже все ясно - поставляется только по ОЕМ-каналам и стоит на $7 дешевле, чем 3470S: совсем чуть-чуть, но для крупной партии моноблоков или компактных настольников (где как раз и используются процессоры с TDP 65 Вт) экономия может оказаться значительной. А вот Core i5-3330… Непонятно - для кого? «Коробочная» версия стоит всего на 8 долларов дешевле, чем 3470, ОЕМ - и вовсе на 2 (два!) доллара дешевле. При этом процессоры различаются только частотой, но «пол» для 3470 (3,2 ГГц без турбо, что на практике будет редким явлением, поскольку и при нагрузке на все четыре ядра процессор умеет разгоняться до 3,4 ГГц) - это «потолок» для 3330 (там эта частота только в турбо-режиме и достигается, причем не более чем при половинной загрузке). Да и максимальная частота видеоядра на 50 МГц снижена - до уровня Core i3/Pentium .

Словом, непонятный процессор. Единственное объяснение - розничная (благо совпадают «коробочные» цены) замена линейки Core i5-23xx, которую решено «пристрелить» целиком. Себе - мы б не купили:) Но для тестирования, естественно, процессор интересный. Во-первых, потому что это самый младший четырехъядерный Ivy Bridge. Во-вторых, это еще один процессор с номинальной частотой 3,0 ГГц и турбо-режимом, т. е. по формальным признакам такой же, как Phenom II X4 960T и Х6 1075T. Максимальная частота у него, впрочем, минимальная (просим прощения за каламбур) в этой тройке, зато архитектура самая современная. C Pentium G2120 и Core i3-3220, опять же, сравнить его интересно.

Как мы уже не раз предупреждали, в основной линейке тестирований способность Ivy Bridge работать с DDR3-1600 нами пока не используется. Впрочем, повышение частоты памяти почти ничего не дает и топовому Core i7-3770K (при использовании дискретной видеокарты, разумеется), так что сложно было бы ожидать рекордных урожаев применительно к Core i5, i3 или, тем более, Pentium (недавно мы получили для представителей этого класса процессоров лишь 2% в среднем от замены DDR3-1066 на DDR3-1333, ну а дальнейший переход на DDR3-1600 и столько не даст). Впрочем, в тестированиях по следующей версии тестовой методики (переход на которую не за горами) мы перестанем «выравнивать» окружение для процессоров под LGA1155, а пока сохраним сегодняшнюю практику неизменной (иначе пришлось бы заново перетестировать немалое количество уже изученных процессоров семейства Ivy Bridge).

Тестирование

Традиционно, мы разбиваем все тесты на некоторое количество групп и приводим на диаграммах средний результат по группе тестов/приложений (детально с методикой тестирования вы можете ознакомиться в отдельной статье). Результаты на диаграммах приведены в баллах, за 100 баллов принята производительность референсной тестовой системы сайт образца 2011 года. Основывается она на процессоре AMD Athlon II X4 620, ну а объем памяти (8 ГБ) и видеокарта () являются стандартными для всех тестирований «основной линейки» и могут меняться только в рамках специальных исследований. Тем, кто интересуется более подробной информацией, опять-таки традиционно предлагается скачать таблицу в формате Microsoft Excel , в которой все результаты приведены как в преобразованном в баллы, так и в «натуральном» виде.

Интерактивная работа в трёхмерных пакетах

Как и предполагалось, 960Т оказался чуть быстрее 955, но медленнее, чем 1075Т - малопоточная группа тестов в которой технология Turbo Core может развернуться в полную силу. Однако самой этой «силы», как видим, маловато - процессоры Intel с такими или даже чуть меньшими частотами намного быстрее. А что тоже держатся плотной группой, так это понятно - как мы уже установили Hyper-Threading в этой группе только мешает, а дополнительные «честные» ядра просто не нужны.

Финальный рендеринг трёхмерных сцен

Вот эти подтесты уже способны загрузить работой любое разумное количество потоков вычисления, так что Phenom II X6 1075T почти догнал Core i5-3330. Достижение? Не очень - средний шестиядерный процессор почти догнал младший четырехядерный. Ну а четырехъядерные модели при таких исходных данных, естественно, способны на равных выступать только против двух ядер с Hyper-Threading. И спасает тут положение только то, что второе - дороже. А за те же деньги Intel предлагает лишь два обычных ядра, которые весомо медленнее.

Из менее глобального - как и предполагалось, при такой нагрузке 955 чуть-чуть быстрее, чем 960Т: Turbo Core при полной загрузке ядер не работает.

Упаковка и распаковка

Поддержка многопоточности есть только в одном подтесте из четырех, так что 960Т немного быстрее 955 и оба отстают от Pentium G2120. Зато 1075Т способен конкурировать с Core i3-3220 - в общем-то, тоже достаточно смешное сравнение:)

Кодирование аудио

По типу нагрузки эта группа тестов сходна с рендерингом, так что и результаты соответствующие. Не слишком радостные для Phenom II - Х4 способны, конечно, обогнать обычные двухъядерные процессоры, но таковые встречаются только среди бюджетной продукции. А вот «два ядра четыре потока» на сравнимых тактовых частотах уже не хуже по производительности, чем четыре «настоящих» ядра старого образца. Ну и шесть таковых, вестимо, с трудом способны спорить с четырьмя более современными. Да, мы помним, что 1075Т не самый старший Phenom II X6, но быстрее его было две модели. А Core i5-3330 - самый медленный из настольных четырехъядерных Ivy Bridge.

Компиляция

Компиляторные тесты всегда были сильным местом Phenom, однако на данный момент их победа и здесь начинает превращаться в чисто номинальную: да, несколько быстрее, но кого быстрее? Пару лет назад тот же 1075Т с легкостью обгонял самый быстрый Core i5, а Phenom II X4 держались на сравнимом с последним уровне. Вот и сравните это с сегодняшним положением дел.

Математические и инженерные расчёты

Можно обойтись без развернутых комментариев - как видим, подобные типы нагрузки плоховато сказываются и на процессорах Intel (поскольку Pentium, Core i3 и Core i5 «тусуются» на одном уровне несмотря на разную цену), а для Phenom II они вообще смерти подобны (поскольку тут и с Pentium сравнение будет неполиткорректным).

Растровая графика

Некоторая многопоточная оптимизация в части программ есть, однако она позволяет лишь выстроить процессоры Intel в правильной последовательности и дает возможность Phenom II X6 обогнать Х4. На этом все - два практически непересекающихся мира.

Векторная графика

Двух потоков достаточно, что приводит к определенному хаосу в ассортименте продукции под LGA1155, однако слабо помогает Phenom. Разница между тремя взятыми сегодня моделями полностью определяется Turbo Core (или отсутствием этой технологии у 955) и не позволяет никому из них полноценно конкурировать со старшими Pentium. Впрочем, отметим еще раз - младшим Core i5 это тоже удается с трудом, почему Intel и приходится искусственно сдерживать частоты двухъядерных бюджетных моделей: софта, подобного этим двум программам, на рынке немало.

Кодирование видео

С одной стороны, есть где развернуться многоядерным процессорам, с другой - как мы уже не раз говорили (в т. ч. и совсем недавно) для видеокодеков количество ядер является важным, но не единственным параметром процессоров. Соответственно, все, что удалось сделать Phenom II X4 955 и 960T - обогнать «простые» двухъядерные процессоры, а Phenom II X6 1075T хватило и на конкуренцию с тоже двухъядерными, но четырехпоточными. Опять же напомним, что пару лет назад все выглядело совсем иначе : в видеокодировании управиться с Х6 могли только Core i7, а Х4 выступали на равных со старшими Core i5. Сейчас - все по-другому. Потому, что у AMD это все те же процессоры, что и тогда, а у Intel старыми только названия семейств остались:)

Офисное ПО

И вновь тоже самое! Ничего неожиданного, конечно - большинство тестов этой группы вообще однопоточные. Просто очередная иллюстрация того, что выбирать процессоры по количеству ядер нужно крайне аккуратно - вовсе не обязательно все они будут задействованы программным обеспечением. А подбирать ПО «под многоядерность» - задача простая лишь для тестеров: «неудобных» приложений среди популярных очень много. Как бы даже не большинство - если под «популярными» понимать массово используемые.

Java

Но в некоторых специфических нишах старички, разумеется, выступают хорошо. Относительно хорошо - сравнительно с другими приложениями, а вовсе не по абсолютным результатам. С их точки зрения, как мы уже говорили выше, победы среднего шестиядерного процессора над младшим четырехъядерным или некогда неплохих четырехъядерных в лучшем случае над Core i3 особого оптимизма не вызывают.

Игры

Как мы уже не раз говорили, современными играми четыре потока вычислений вполне востребованы во всех случаях, когда самым узким местом не является видеокарта. Однако, как видим, в «общем и целом» быстрый двухъядерный процессор (типа Pentium) вполне способен держаться наравне с медленными четырехъядерными (типа Phenom II). Если посмотреть на подробные результаты, то заметно, что некоторым приложениям вторые, все же, «нравятся» чуть больше. Но о каком-то однозначном превосходстве речи уже не идет. Вот при одинаковой архитектуре можно точно утверждать, что четыре ядра и в играх лучше двух (причем любых - даже «сдобренных» Hyper-Threading, не говоря уже об «обычных»), а при разной - всякое может быть.

Многозадачное окружение

Как мы уже не раз говорили, никакой эксклюзивности в результатах теста с одновременным запуском нескольких программ нет - просто сэмулировали еще одно многопоточное приложение. И результат соответствующий: младшие четырехъядерные Phenom II X4 на 25% быстрее, чем двухъядерные Pentium, но примерно равны Core i3, а средний шестиядерный Phenom II X6 1075T на самую малость обогнал младший Core i5 третьего поколения. Такие вот эффективные в семействе Ivy Bridge ядра получаются, что побеждают не числом, а умением.

Итого

Вот, собственно, и ответ на вопрос, почему Phenom II X4 955 стоит на уровне Pentium. Да потому, что и производительность его в среднем на том же уровне! Никаких чудес, на которые так надеются многие экономные покупатели - цена каждой вещи определяется тем, за сколько ее можно продать. А для процессоров последнее зависит от производительности и энергопотребления. Может ли 955 сейчас стоить более 100 долларов, как стоил летом? Разумеется нет - за такие деньги есть уже и более привлекательные предложения. А вот за «около 100» - уже очень неплохой процессор, способный (при многопоточной нагрузке) потягаться и с Core i3. Но, заметим, не с Core i5, где те же четыре ядра - количество не всегда переходит в качество. Так что именно этим (а вовсе не заботой о малообеспеченных слоях населения) и объясняются снижения цен. Да и исчезновение Thuban из розничных сетей при формальном продолжении поставок - тоже им же: для рыночного успеха все шестиядерные модели AMD (включая топовые) должны стоить не дороже 150 долларов, а производить их при таких исходных данных компания не имеет ни желания, ни возможности (если вспомнить размер кристалла 346 мм² - в два с лишним (!) раза больше, чем у четырехъядерных Ivy Bridge). Конечно, где-то в специфических областях применения многоядерные Phenom II до сих пор выглядят очень хорошо, но не менее часто (причем как раз в широко востребованных приложениях массового назначения) они «всухую» проигрывают бюджетным процессорам Intel. Вот разработки на новой микроархитектуре (что APU , что обновленные ) - куда менее печальное зрелище, а «классические» Athlon и Phenom однозначно зашли в тупик.

Таким образом, для сборки новой системы Phenom II, несмотря на снижение цен, особого интереса не представляют (за исключением случая «сумасшедшего программиста», который что-то компилирует 24 часа в сутки, добывая электричество при помощи персонального ветряка). Однако пользователи, способные выиграть благодаря идущей «распродаже», существуют: Phenom II X4 955 и 965 прекрасно подойдут для апгрейда системы на каком-нибудь Athlon II, не говоря уже о более старых процессорах AMD (последнее, разумеется, только при наличии технической возможности). Особенно «стобаксовый апгрейд» будет интересен обладателям больших объемов памяти типа DDR2: ну и что, что производительность далека от максимальной на рынке - зато это единственный способ не менять вместе с процессором и память, и системную плату. Осознают это и в AMD. И не против (несмотря на сложившееся реноме Робин Гуда - защитника бедных и угнетенных) на нем подзаработать: подешевели-то только 955 и 965, а вот за чуть более быстрые модели просят 140-160 долларов.

Впрочем, поскольку все продаваемые ныне Phenom II X4 относятся к семейству Black Edition, способы борьбы с указанной несправедливостью давно известны. Да-да: булыжник разгон - орудие пролетариата. Подобным же образом можно «победить» и нежелание AMD снижать цены на Phenom II X6: Phenom II X4 960T в продаже найти пока можно, и (при наличии подходящей матплаты) разблокировать ему пару ядер тоже можно. Есть, конечно, риск, что не получится, однако конечный результат, как нам кажется, стоит того, чтоб рискнуть. Тем более, в случае неудачи получится процессор с производительностью, примерно аналогичной, как видим, Phenom II X4 955, что, с учетом минимальной разницы в цене этих процессоров, вполне нормально. Зато если все пройдет удачно, то получится почти полный аналог Phenom II X6 1075T. Не только намного более дорогого, но и находящегося в другом классе производительности.

И в любом случае не стоит забывать о том, что все преимущества многоядерных Phenom II можно испытать на практике лишь при наличии среди постоянно используемых приложений большого количества программ, оптимизированных под многопоточные процессоры. Если уверенности в таковом нет, то и большого смысла в четырех-шести ядрах нет тоже. Один-два потока вычислений - царство Pentium, в котором эти процессоры способны спокойно потягаться на равных и с Core i3/i5, не говоря уже о Phenom II. Да и видеочасть в них заметно лучше, чем в стареньких (технологически; неважно, что до сих пор продаются) интегрированных чипсетах AMD, и энергопотребление таких моделей заметно ниже.

Однако распродажа - это всегда хорошо, поскольку способы ею воспользоваться существуют. Равно как и поэтапный переход процессоров для LGA1155 на Ivy Bridge - это тоже хорошо: они лучше своих предшественников, что, в общем-то, будет заметно всем их покупателям. Хотя и этот переход идет иногда странными путями, порождая подчас очень странные модели, типа Core i5-3330. До последнего времени номинально самым дешевым Core i5 оставался 2320 предыдущего поколения, а теперь в Intel решили, видимо, сделать ему замену (и, кстати, чуть более быструю, чем i5-2400). Но вот практическая реализация подкачала: сравнительно с 3470 процессор слишком уж замедлили, а реальные розничные цены этих моделей в Москве отличаются зачастую лишь на 100 рублей, а то и менее. 2320 же или более старый 2310 позволяют (если хорошо поискать) сэкономить рублей этак 300, что куда более интересно, когда деньги находятся на первом месте. В общем, зачем он такой на свет появился - нам абсолютно неизвестно. С другой стороны, никому его наличие в продаже, в общем-то, и не мешает, а сборщикам готовых систем он может оказаться полезным. Главное - не купить ненароком. Почему, собственно, мы и не пожалели времени на его тестирование: предупрежден - значит вооружен.

Закрывая круг «исторических тестирований», сегодня мы займемся платформой, которая формально остается в числе живых и здравствующих, хотя идеологически даже старше ранее рассмотренных AMD FM1 и Intel LGA1156 . Как ей это удается? Этим вопросом мы уже занимались : Socket AM3+ 2011 года практически ничем не отличается от «просто» АМ3 2009, получившейся путем перехода с DDR2 на DDR3 из AM2/AM2+ от 2006 года, а эти, в свою очередь, являются практически ни чем иным, как Socket 939 лета 2004 года, но с DDR2, а не с «простой» DDR. Правильнее, впрочем, говорить даже о 2003 годе, когда появился Socket 940: Socket 939 - это его упрощение, без поддержки многопроцессорных конфигураций. За это время успели поменяться не только стандарты памяти, конечно, но и некоторые другие интерфейсы, однако концептуально в виде АМ3+ мы имеем классическую платформу нулевых годов - трехчиповую и относительно низкой степени интеграции. Стоит также заметить, что последние микроархитектурные обновления выпускаемых для нее процессоров относятся к концу 2012 года , т. е. и с этой точки зрения даже последняя модификация АМ3+ - это уже история (в той же степени, что и LGA1155, например). Однако в рамках других платформ компания AMD отгружает не более чем двухмодульные процессоры (поддерживающие, соответственно, лишь четыре потока вычислений) с существенным креном в сторону интегрированной графики, так что самыми производительными процессорами AMD до сих пор являются именно устройства для АМ3+. Они давно не обновлялись, но окончательное их устаревание запланировано только на вторую половину этого года - в связи с переходом на единый (наконец-то!) сокет АМ4, для которого будут выпускаться и высокопроизводительные процессоры без интегрированной графики, и относительно бюджетные с таковой. Несложно заметить, что это пока еще не аналог LGA1155 и последующих платформ Intel - скорее, повторение LGA1156, поскольку при выборе быстрого процессора «в нагрузку» придется использовать и дискретную видеокарту. Но это все же намного лучше того, что происходило с ассортиментом компании последние пять лет, когда разнообразные FMx и все та же давно устаревшая АМ3+ были попросту несовместимы друг с другом.

Как компании удавалось поддерживать АМ3+ «на плаву», не обновляя процессоры? Да очень просто: за счет цены. О конкуренции за любителей высокой производительности все равно пришлось давно забыть, зато за примерно одни и те же деньги покупатель может приобрести либо восьмипоточный FX-8350/8370, либо четырехпоточный Core i5-6400. Да, разумеется, сравнение цен в данном случае не совсем корректно, поскольку не учитывает прочие особенности платформ и, в первую очередь, возможность сэкономить на видеокарте в случае платформы Intel. Однако если видеоускоритель все равно нужно приобретать (например, когда интересуют игры - мы придерживались и продолжаем придерживаться мнения, что полноценный игровой компьютер без дискретной видеокарты все еще невозможен), эта проблема отпадает. И на первый взгляд становится неважно, что тот же FX-8350 появился еще в 2012 году: реклама в его случае вообще говорит о восьми ядрах (забывая уточнить, что это несколько не те ядра, что в других архитектурах процессоров даже самой AMD), т. е. создает впечатление процессора, который в исполнении Intel стоит штукубаксов . Правильный это подход, неправильный - но работает же. А как - полезно проверить. В конце концов, как уже было сказано выше, в этом году нам наконец-то удастся познакомиться с новыми процессорами AMD - так что их в любом случае придется сравнивать со старыми. Вот сегодня и создадим «информационный задел» по старым и даже очень старым процессорам, благо представилась такая возможность.

Конфигурация тестовых стендов

Процессор AMD Phenom II X6 1075T AMD FX-8370
Название ядра Thuban Vishera
Технология пр-ва 45 нм 32 нм
Частота ядра std/max, ГГц 3,0/3,5 4,0/4,3
Кол-во ядер/потоков 6/6 4/8
Кэш L1 (сумм.), I/D, КБ 384/384 256/128
Кэш L2, КБ 6×512 4×2048
Кэш L3, МиБ 6 8
Оперативная память 2×DDR3-1333 2×DDR3-1866
TDP, Вт 125 125
Графика - -
Кол-во EU - -
Частота std/max, МГц - -
Цена - T-11149970

Главных героев будет два. FX-8370 процессор относительно новый - появился в конце 2014 года, но от FX-8350 (первенце семейства Vishera) отличается лишь тактовой частотой турбо-режима. Заметим, что формально топовыми представителями семейства являются FX-9370 и FX-9590, но и существуют последние лишь формально: TDP в 220 Вт мало того, что сам по себе многих отпугивает, так еще и приводит к проблемам совместимости со многими системными платами, а также вдумчивого подхода к выбору системы охлаждения. Ну а если это все не пугает, то не стоит забывать о том, что любые процессоры семейства FX имеют полностью разблокированные множители, позволяя сколь угодно тонкий тюнинг - в том числе, и по частоте. Это, кстати, еще одна причина того, что платформа до сих пор имеет определенную популярность у тех пользователей, кому неважен результат - главное, сам процесс. Который в данном случае еще и облегчается огромным кристаллом производимого по техпроцессу 32 нм процессора - обеспечить таковому теплоотвод очень просто (иногда недостатки могут становиться и достоинствами). Причем комплектация «боксовых» процессоров обновленными кулерами позволяет рассчитывать на неплохие результаты даже в таком варианте, который может оказаться еще и более дешевым, чем «традиционный» подход с ОЕМ-процессором и каким-нибудь «суперкулером». В общем, для ограниченного в средствах энтузазиста платформа интересна, несмотря на свою архаичность.

Но раз уж тестирование данной платформы все равно представляет собой экскурс в историю, мы решили по новой методике (включающей и изучение вопросов энергопотребления) протестировать и еще более старый процессор, относящийся к семейству Phenom II X6. До выхода первых FX в 2011 году - топовому в ассортименте компании. Более того - это навсегда лучшее решение для старых плат с «обычным» АМ3 и даже АМ2+. Причем, как показывали наши тесты, для процессоров семейства Phenom II использование DDR3 не так уж и необходимо, так что не удивимся, если где-то такие системы продолжают использоваться (в конце-концов даже по Конференции регулярно пробегают владельцы Pentium D - до сих пор:)). Лучше всего нам подошел бы топовый 1100Т, но такового не нашлось, а имеющийся 1075Т, увы, не Black Edition, так что корректным образом в старшую модель не превращается. Впрочем, даже при наличии возможности разгона множителем, неизвестно еще - насколько это корректно с точки зрения измерения энергопотребления, да и линейка сама по себе настолько старая (2010 год!), что, как нам кажется, большой разницы уже нет - тестировать 1100Т или 1075Т. Поэтому будет второй - раз уж он есть.

Процессор AMD Athlon X4 880K Intel Core i5-6400 Intel Core i7-880 Intel Core i7-3770
Название ядра Godavari Skylake Lynnfield Ivy Bridge
Технология пр-ва 28 нм 14 нм 45 нм 22 нм
Частота ядра std/max, ГГц 4,0/4,2 2,7/3,3 3,06/3,73 3,4/3,9
Кол-во ядер/потоков 2/4 4/4 4/8 4/8
Кэш L1 (сумм.), I/D, КБ 192/64 128/128 128/128 128/128
Кэш L2, КБ 2×2048 4×256 4×256 4×256
Кэш L3, МиБ - 6 8 8
Оперативная память 2×DDR3-2133 2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1333 2×DDR3-1600
TDP, Вт 95 65 95 77
Графика - HDG 530 - HDG 4000
Кол-во EU - 24 - 16
Частота std/max, МГц - 350/950 - 650/1150
Цена T-13582517 T-12873939 - T-7959318

С кем будем сравнивать? Мы недаром выше упоминали Core i5-6400 - младший четырехъядерник современной линейки Intel непосредственно конкурирует по ценам со старшими моделями AMD (учитывая, конечно, замечание насчет видеокарты). По мнению некоторых читателей, и с решениями для LGA1156 в прошлый раз надо было сравнивать именно его, а не имеющий близкую цену и производительность, но все же двухъядерный Core i3-6320. Поэтому мы сегодня к списку испытуемых добавим и лучший процессор для упомянутой платформы, а именно Core i7-880, благо первые FX создавались в том числе и для конкуренции с таковыми. К сожалению, правда, вышли позднее, чем это было нужно для обеспечения таковой - уже во времена процессоров для LGA1155. Одна из таких моделей (пусть уже третьего, а не второго поколения Core) нами на данный момент протестирована - добавим и ее к списку испытуемых для полноты картины. И, заодно, самый быстрый Athlon X4 для FM2+ - для массовости. Тем более, что для поклонников продукции AMD это тоже в какой-то степени прямые конкуренты: FX-8370 безусловно «круче», но он ведь и дороже. Да еще и плюс архаичная платформа. А еще среди тестируемых, напомним, есть и Phenom II X6 1075T, так что любопытно будет посмотреть - как шесть, но старых ядер соотносятся с современными, но двумя модулями. Понятно, что четыре - интереснее, но простым и недорогим переход с Phenom II (не обязательно шестиядерным) будет только при наличии платы с АМ3+. Если же есть только АМ2+, так все равно менять все. Но если на такой плате, к примеру, установлен какой-нибудь Athlon II, производительности которого уже маловато, вопрос - найти на вторичном рынке Phenom II или менять платформу, вовсе не праздный.

Что касается прочих условий тестирования, все испытуемые работали в системе с дискретной видеокартой на базе Radeon R9 380 и 16 ГБ оперативной памяти. Тип и частота последней были максимальными поддерживаемыми процессорами - для всех, за исключением Phenom II X6 1075T, который мы тестировали с DDR3-1600, что проблем не вызывает (впрочем, на производительности тоже почти не сказывается).

Методика тестирования

Методика подробно описана в отдельной статье . Здесь же вкратце напомним, что базируется она на следующих четырех китах:

  • Методика измерения энергопотребления при тестировании процессоров
  • Методика мониторинга мощности, температуры и загрузки процессора в процессе тестирования

А подробные результаты всех тестов доступны в виде полной таблицы с результатами (в формате Microsoft Excel 97-2003) . Непосредственно же в статьях мы используем уже обработанные данные. В особенности, это относится к тестам приложений, где все нормируется относительно референсной системы (как и в прошлом году, ноутбука на базе Core i5-3317U с 4 ГБ памяти и SSD, емкостью 128 ГБ) и группируется по сферам применения компьютера.

iXBT Application Benchmark 2016

Как видим, появись модульная архитектура году так в 2010, ее «жизнь» существенно-упростилась бы: и пара модулей уже не уступает Core i5 того времени, а четыре могут убедительно превосходить даже четырехъядерные Core i7. Но, к сожалению (или к счастью), в 2011 году при разработке процессоров для LGA1155 Intel удалось существенно улучшить все характеристики своих изделий, причем настолько резко, что с тех пор подобных «подвигов» уже пять лет не наблюдается. В итоге старшие FX пришлось позиционировать не в сегмент между i5 и i7, а на уровень первых. Так что их цена вполне соответствует производительности, но не более того. Причем хорошо заметно, что других вариантов у компании и не было - перенос Phenom на более тонкий процесс производства вряд ли сумел их существенно «подстегнуть»: для того, чтобы обойти шесть старых ядер, уже зачастую достаточно и двух модулей, а не трех-четырех.

Особенно тогда, когда программное обеспечение не всегда может полноценно задействовать большое количество потоков вычисления, но требовательно к их качеству - включая и поддержку современных наборов команд и прочее. В итоге даже старшие FX ныне отстают уже и от младших Core i5, однако могло быть и хуже - что нам Phenom продемонстрировал. Собственно, как не раз уже было сказано - обычно интенсивные улучшения архитектуры дают свой эффект вовсе не в тех поколениях процессоров, в которых внедряются. Но чем далее - тем более важны.

А вот здесь - ничего не важно: был бы один быстрый поток. В таких условиях (что не секрет) процессорам AMD туго приходится, однако несложно заметить, что шансы быть самыми быстрыми на рынке в 2010 году у них были.

А вот в данном случае - и гипотетического не было. Впрочем, судя по небольшой разнице между FX и Phenom (причем даже не старшим) видно, что над оптимизацией таких сценариев работы никто и вовсе не занимался: все равно производительность для тех времен неплохая.

Как мы уже не раз писали, относительно старый целочисленный код - лучшее, что может встретиться в жизни модульным процессорам AMD. И хорошо заметно, что в общем-то для таких применений они во многом и разрабатывались: все-таки и шестиядерные Phenom II в 2010 уже не могли в таких задачах конкурировать с четырехъядерными Core i7, а вот для четырехмодульных FX это было посильной задачей. К сожалению, в конце 2011 года (когда первые процессоры этого семейства наконец-то появились физически) значительно усложнившейся.

Собственно, ария из той же оперы - как мы уже отмечали, упаковка данных по логике работы сходна с распознаванием текста. И по результатам тоже.

Явный аутсайдер здесь - Core i7-880, но просто потому, что LGA1156 поддерживала только SATA300. Как мы уже отмечали, чтоб разница стала вообще заметной, надо использовать быстрый SSD, с чем в те годы были сложности. Сейчас вот уже нет, так что это немного, но сказывается. А вот свои чипсеты AMD наделила поддержкой нового интерфейса уже тогда, так что в данном случае вообще обошлось без каких-либо шероховатостей.

Как мы уже не раз упоминали, разнообразные SMT-технологии программе «чужды», а вот количество «аппаратных» ядер и их качество - актуальны, что, например, выливается в то, что современный младший Core i5 быстрее старых Core i7. И даже не таких уж принципиально старых - позади остался не только 880, но и 3770. Первый отстал также и от FX-8370, что дело привычное. А вот шесть совсем старых архитектурно ядер в Phenom II… Два модуля современных процессоров AMD они обогнать могут, но с большим трудом - с тремя уже не справятся.

Что имеем в общем итоге? FX-8370 примерно в полтора раза быстрее, чем Athlon X4 880K - нормальная прибавка за счет удвоения ядер и добавление кэш-памяти третьего уровня. Но, к сожалению, этого уже маловато для конкуренции с современными процессорами Intel, что равные цены и то не полностью компенсируют. Хотя бы потому, что покупатель Core i5-6400 может обойтись без дискретной видеокарты, а выбравший FX - не может. Но если он ее все равно планирует приобрести, получается нечто близкое к паритету - до сих пор. Правда цены не его причина, а скорее следствие - недаром все годы они снижались.

Почему ситуация оказалась именно такой - в принципе, по результатам тоже можно предположить. Мы в точности не знаем - на какие годы пришлась основная часть разработки модульной архитектуры, но можно предполагать, что это было ранее 2011 года - ведь именно тогда (причем после нескольких задержек) первые процессоры для АМ3+ уже начали продаваться. Произойди это годом ранее, когда такие четырехъядерные процессоры, как Core i7-870/880 стоили в районе трех-пяти сотен долларов, эффект был бы заметным - сравнимым с выпуском первых Athlon. При этом для замены четырехъядерных Phenom или Core 2 Quad подошли бы двухмодульные процессоры (в т. ч. и модели с интегрированным GPU), а трехмодульные нормально бы смотрелись на фоне Phenom II X6 (или вместо таковых) и Core i5. Но в итоге процессорам пришлось конкурировать не с моделями для LGA1366 или LGA1156, а с новенькой (на тот момент) LGA1155, которая все еще неплоха и на фоне более новых платформ Intel. Которые, впрочем, стали еще лучше, а старые FX так и живут на рынке без серьезных изменений с 2012 года. Что и приходится компенсировать ценами, которые сначала были между Core i5 и i7, потом на уровне старших i5, потом средних, теперь вот младших. Поскольку и потребительские характеристики процессоров таким ценам примерно и соответствуют. Только вот Core i5 - очень дешевые для производства процессоры, а FX - дорогие. Так что этот порочный круг пора бы и разорвать - чем дальше, тем это сложнее. Будем надеяться, что в этом году все получится.

Энергопотребление и энергоэффективность

Впрочем, что касается энергопотребления, то и в те годы с ним было не все гладко, а с точки зрения современности 200 Вт весьма пугающи. Понятно, что это включая и то, что «проходило» через плату для питания видеокарты - но ведь она для всех одинаковая. А вот «прожорливость» трехчиповой платформы - в чистом виде ее особенность и «привет из нулевых»: современные намного экономичнее. Впрочем, если обратить внимание на собственно потребности процессора, то там тоже до 140 Вт дело доходило, т. е. для AMD превышение уровня TDP как раз обычное дело (хотя некоторые по-старинке до сих пор пытаются ругать за это Intel). А вот Phenom II X6 на первый взгляд выглядит лучше. Но не стоит забывать, что это совсем не старшая модель линейки, во-первых, и что энергопотребление имеет смысл лишь в связке с производительностью, во-вторых.

А с этой точки зрения модульная архитектура была явным шагом вперед. Отметим также, что FX ведут себя лучше, чем Athlon - хотя бы потому, что общая кэш-память третьего уровня (которой в процессорах для FM2/FM2+ нет) положительно сказывается на производительности, но не слишком прожорлива. Правда и места занимает много, почему ее реализация в процессорах с интегрированными GPU оказалась невозможной. Но в общем и целом становится понятным, почему компания не стала делать шринк FX на техпроцесс 28 нм: в APU он позволил увеличить мощность графики, но процессорным ядрам не дал бы ничего или почти ничего. И тревожный звоночек «бил в набат» еще пять лет назад: достичь уровня производительности 45-нанометровых процессоров Intel удалось, но ценой излишнего энергопотребления (кто сказал «NetBurst»?) . А дальше ситуация только усугублялась.

iXBT Game Benchmark 2016

А могут ли эти процессоры хорошо поработать в игровом компьютере? Вообще говоря, да - ведь основная нагрузка ложится на видеокарту. Но сколько возможностей последней «пропадет» из-за процессора? Особенно непраздным этот вопрос, кстати, является для пользователей плат с AM2+ или «обычным» AM3, где Phenom II X4/X6 - лучшее из доступного без смены платформы, а некогда популярные Athlon II с т. з. современности уже совсем ничего «не тянут».

Случай, когда критична «однопоточная производительность», что ставит все процессоры AMD в неудобное положение. Производительность даже (уже) недорогого R9 380 «сдерживают» все испытуемые. Но и играть с комфортом можно на всех же.

А здесь все справляются близко к максимуму возможного. И, кстати, обратите внимание - старые Phenom II заметно лучше новых Athlon.

Здесь хуже, однако, опять же, уже Phenom II ничуть не хуже любых Core 2 Quad или там Core i5/i7. А FX уже способны «пободаться» и с более новыми i5/i7.

Но в более новой игре серии Phenom II держится на равных (уже на равных) лишь с Athlon. Чего, впрочем, для практического использования вполне достаточно - но могло бы быть лучше. Хотя бы на уровне FX, который в FHD уже позволяет выбранной видеокарте «выложиться» на полную.

А здесь все примерно одинаковы - различия есть только в режиме со сниженным разрешением. И, что забавно, они скорее в пользу АМ3+, чем наоборот.

Когда все определяется видеокартой, хороши и процессоры пяти-шестилетней давности. Наиболее мощные из них, конечно. Но и стоить они чуть позже начали очень дешево.

FX ведет себя неплохо, время Phenom II, увы, истекло. С другой стороны, если такой процессор уже есть, то менять в игровом компьютере его вовсе не обязательно - заметного эффекта не будет. Лучше уж видеокарту еще мощнее поставить.

Вот Thief явно «голосует» за мощные платформы - и считает таковыми лишь современный ассортимент Intel. C одной стороны. С другой - нельзя сказать, что что-то совсем уж не работает. Порядка 40 кадров есть - при желании сэкономить на смене платформы, это можно считать достаточным.

Вот в этой паре зависимость частоты кадров от производительности процессоров уже есть. Но, собственно, и что? Абсолютные результаты всех испытуемых более чем достаточны для комфортной игры. Так что в конечном итоге приходим к тому, что для недорогого игрового компьютера «старый дуб еще пошумит». Естественно, если он уже есть (или может быть приобретен очень дешево). И, естественно, учитывая тот факт, что даже для бюджетных современных видеокарт такой процессор может оказаться «ограничительным фактором». Не в том плане, что поиграть не удастся, а в том, что производительность, все же, будет более низкой, чем потенциально возможная. Но и это до сих пор происходить будет не всегда.

Итого

В принципе, ничего необычного в итоге мы не получили - платформа формально «живая» и актуальная, но на самом деле давно не обновляемая. Нужны же обновления или нет - вопрос дискуссионный. Некоторым, например, не нравится, что Intel постоянно что-то модернизирует, почти не меняя производительность процессоров. С другой стороны, за одни и те же деньги производительность постоянно (пусть и медленно) растет, а необходимость в смене платформ обусловлена в первую очередь их функциональностью. В итоге какая-нибудь топовая системная плата пятилетней давности, например, выглядит уныло и бледно на фоне даже самых бюджетных современных предложений, ценой раз в пять ниже. Если же ничего не трогать, то и производительность расти не будет, и в остальном характеристики компьютера так и будут оставаться типичными для пяти-семилетней давности. Другой вопрос, что во многих случаях этого вполне достаточно, и в случае разумной ценовой политики «исторические» платформы оказываются вполне пригодны для практического применения, пока физически не исчезнут из эксплуатации, что случится, очевидно, еще позже окончания продаж.

ВведениеЕсли вы регулярно знакомитесь с материалами, публикуемыми на нашем сайте, то наверняка успели заметить, что число обзоров двухъядерных процессоров, вышедших в течение последнего года, можно пересчитать по пальцам одной руки. И этот факт совершенно не означает нашей ярой приверженности концепции многоядерности. Напротив, при каждом удобном случае мы не устаём напоминать о том, что на современном этапе развития рынка программного обеспечения, процессоры, располагающие двумя вычислительными ядрами, вполне способны демонстрировать более чем достаточный уровень производительности. Ослабление же внимания к «двухъядерному» сегменту рынка объясняется тем, что его развитие практически полностью прекратилось, так как ведущие производители x86-процессоров для настольных компьютеров сосредотачивают свои основные усилия на разработке и продвижении четырёхъядерных моделей. Вся же активность, связанная с двухъядерными процессорами уже давно, фактически, заключается либо в небольшом увеличении тактовых частот имеющихся семейств продуктов, либо в снижении их цен.

Впрочем, небольшие количественные изменения этого рода в итоге дали и качественный результат, который мы смогли обнаружить в недавно вышедшей статье «». Как оказалось, двухъядерные предложения AMD перестали быть серьёзными конкурентами процессорам Intel Core 2 Duo, довольствуясь лишь соперничеством с недорогими моделями Intel Celeron. Наше тестирование показало, что даже относительно новые Athlon X2 серии 7000 не могут рассматриваться в качестве достойной альтернативы хотя бы процессорам Pentium, основанным на ядре Wolfdale-2M, не говоря уже о более «серьёзных» предложениях Intel.

Тем не менее, переживаемый в настоящее время компанией AMD ренессанс, связанный с появлением и распространением новых ядер, производимых по 45-нм технологическому процессу, вносит в эту мрачную картину определённые коррективы. Так, на поверку, вполне конкурентоспособными оказались трёхъядерные процессоры Phenom II X3 700 , которые с определёнными допущениями можно рассматривать как некую альтернативу интеловским Core 2 Duo. Однако, несомненно, для полноценного присутствия в средней части рынка компании AMD всё же не хватает нормальных двухъядерников, способных обеспечить современный уровень быстродействия. Понимают это и специалисты компании AMD, поэтому выпуск обновлённых двухъядерных процессоров, основанных на новейших 45-нм ядрах, выступал для компании одним из основных приоритетов.

И вот, наконец, сегодня компания AMD ликвидирует образовавшуюся брешь в структуре собственных предложений, выпуская столь ожидаемые двухъядерные процессоры, чья «официальная» (то есть рекомендованная производителем) цена находится в промежутке от 70 до 120 долларов, на который приходится один из пиков покупательского спроса. Причём, AMD решила преподнести своим поклонниками неожиданный сюрприз и подготовила сразу два двухъядерных семейства нового поколения: Phenom II X2 и Athlon II X2. Процессоры первого семейства представляют собой урезанные производные от процессоров Phenom II с большим количеством ядер, в то время как Athlon II X2 – это в некотором роде самостоятельный продукт, хотя и похожий по микроархитектуре и другим характеристикам на Phenom II. В этом материале мы познакомимся с процессорами обоих семейств, сравним их между собой, а также посмотрим, можно ли говорить о том, что в структуре предложений AMD появились двухъядерные процессоры, способные как-то изменить ситуацию на рынке.

AMD Phenom II X2

Всё разношёрстное множество процессоров Phenom II целиком являет собой яркий пример унификации. Рассматриваемое сегодня семейство Phenom II X2 500 – это уже четвёртый вариант CPU, использующий тот же самый полупроводниковый кристалл Deneb, впервые нашедший применение в процессорах Phenom II X4 900. Причём, Phenom II X2 – это, на первый взгляд, один из самых иррациональных вариантов применения исходного четырёхъядерного кристалла, ведь в данном случае отключению подвергается целых два ядра. Впрочем, с другой стороны оставшийся двухъядерный CPU с кэшем третьего уровня являет собой и удивительный пример рачительности: благодаря Phenom II X2 AMD получает возможность пускать в дело и кристаллы с множественными бракованными блоками.

Получавшийся «обрезок» получил кодовое имя Callisto. На генеалогическом дереве Phenom II он занимает крайнее положение: ещё более урезанных вариантов своего нового четырёхъядерного кристалла, выпускаемого по 45 нм технологии, в планах у AMD нет.

Нетрудно догадаться, что ввиду использования одного и того же полупроводникового кристалла, новые Phenom II X2 500 унаследовали основные свойства от своих старших собратьев. Это в первую очередь касается их совместимости с Socket AM3 материнскими платами и возможности использования скоростной DDR3 памяти. Естественно, как и для всех остальных Phenom II, возможность установки новых двухъядерных процессоров в Socket AM2/AM2+ платы также сохранена. Иными словами, новые двухъядерные Phenom II X2 вполне могут быть применены как для создания новых систем, так и для усовершенствования старых.



При этом, несмотря на то, что по сути Phenom II X2 является для AMD побочным продуктом, компания отнеслась к количественным характеристикам этого семейства вполне ответственно. Так, вместе с тем, что эти процессоры обладают L3 кэшем объёмом 6 Мбайт (таким же по размеру, как и представители семейства Phenom II X4 900), их тактовые частоты находятся на достаточно высоком уровне. Старший процессор Phenom II X2 550 работает на частоте 3,1 ГГц, а это всего лишь на 100 МГц меньше частоты флагмана всей эскадрильи Phenom II, процессора Phenom II X4 955. При этом расчётное максимальное тепловыделение представителей серии Phenom II X2 500 за счёт меньшего количества активных ядер оказывается ниже расчётного тепловыделения всех остальных трёхъядерных и четырёхъядерных Phenom II (за исключением энергетически эффективных моделей) – оно составляет 80 Вт.

Дабы сформировать чёткую и полную картину положения двухъядерных новинок в рядах других процессоров множества Phenom II, мы составили таблицу с их основными характеристиками.



Для тестирования компания AMD прислала нам старшую модель двухъядерного процессора нового поколения, Phenom II X2 550. Её конкретные характеристики можно почерпнуть из скриншота диагностической программы CPU-Z.


Утилита, как видим, показывает, что кодовое имя нашего процессора – Deneb, что, безусловно, по сути неправильным не является. Но в то же время следует иметь в виду, что использованный в основе Phenom II X2 550 четырёхъядерный кристалл с двумя выключенными вычислительными ядрами сама компания AMD называет собственным кодовым именем Callisto.

Также, по скриншоту видно, что процессор Phenom II X2 550 принадлежит к классу Black Edition, то есть обладает незафиксированным множителем, что означает возможность его элементарного и беспрепятственного разгона. Учитывая стоимость этого процессора, которая, по официальным данным, должна составить составлять 102 доллара США, Phenom II X2 550 вполне может стать хорошим вариантом для недорогих оверклокерских платформ. Тем более что новые процессоры AMD, основанные на 45 нм ядре, обладают достаточно неплохим частотным потенциалом.

AMD Phenom II X2 550 – не единственный процессор в серии Phenom II X2 500, выходящий сегодня. Одновременно с ним AMD выпускает и 3-гигагерцовый Phenom II X2 545, который также как и его брат-близнец, будет противостоять процессорам Intel Core 2 Duo E7000. Однако прежде чем посмотреть на результаты сравнительных тестов, давайте познакомимся и с другой двухъядерной новинкой, которую подготовила сегодня компания AMD.

AMD Athlon II X2

Судя по характеристикам, процессоры серии Phenom II X2 500 должны быть очень неплохим предложением в ценовой категории «около $100». Однако выпуск таких процессоров – для AMD удовольствие очень дорогое. Площадь кристалла этого CPU может сравниться с площадью кристалла, используемого во флагманских процессорах Intel семейства Core i7, а значит, что их себестоимость производства Phenom II X2 500 сравнительно высока. Отсюда очевидно, что своим появлением на свет серия Phenom II X2 500 обязана лишь желанию AMD с пользой пристраивать бракованные четырёхъядерные кристаллы Deneb. Жертвовать же полноценными четырёхъядерными кристаллами для двухъядерных процессоров AMD, скорее всего, если и станет, то с большой неохотой. Проще говоря, возможности AMD по поставке Phenom II X2 500 на рынок весьма ограничены, и эти процессоры вряд ли будут способны в полной мере решить все проблемы компании с двухъядерными процессорами средней ценовой категории.

Поэтому совершенно неудивительно, что одновременно с Phenom II X2 AMD представляет и ещё один процессор – Athlon II X2, который, хотя и похож на него по характеристикам, но основывается на куда более дешёвом в производстве ядре Regor. Основные отличия Regor от Deneb лежат на поверхности: этот полупроводниковый кристалл содержит лишь пару вычислительных ядер, а кроме того, для ещё большего сокращения площади и снижения себестоимости, лишён и кэш-памяти третьего уровня. Архитектурно же вычислительные ядра Athlon II X2 не отличаются от вычислительных ядер процессоров Phenom II X2: они используют абсолютно идентичную микроархитектуру K10 (Stars) не отличающуюся ни в каких деталях. Единственное сделанное инженерами AMD изменение – это увеличение объёма принадлежащего каждому вычислительному ядру L2 кэша с 512 Кбайт до 1024 Кбайт, что, очевидно, должно как-то компенсировать отсутствие в ядре Regor общей кэш-памяти третьего уровня.

В итоге, общая площадь полупроводникового кристалла Regor составляет 117,5 кв.мм, что более чем вдвое меньше площади ядра Deneb. И эта величина примерно соответствует площади ядер двухъядерных процессоров Intel, относящихся к семейству Core 2 Duo E8000, которые также производятся с использованием 45-нм технологического процесса. Впрочем, необходимо иметь в виду, что при этом процессоры Intel значительно «сложнее»: они состоят из примерно 410 млн. транзисторов, в то время как количество транзисторов в полупроводниковом кристалле Regor достигает лишь 234 млн. Именно поэтому современные двухъядерные процессоры Intel, основанные на ядре Wolfdale, располагают 6-мегабайтной кэш-памятью второго уровня, в то время как аналогичные по площади ядра Athlon II X2 снабжается лишь 2 Мбайтами L2 кэш-памяти в сумме.



Специально сконструированный инженерами AMD полупроводниковый кристалл с двухъядерным дизайном Regor помимо всего прочего позволил опустить и планку тепловыделения и энергопотребления. Двухъядерные Phenom II X2 500, базирующиеся на ядре Deneb, обладают расчётным тепловыделением 80 Вт, а характеристика TDP процессоров Athlon II X2, построенных на ядре Regor, снижена до 65 Вт. Поэтому AMD надеется, что в результате внедрения 45 нм техпроцесса при производстве двухъядерных процессоров, они смогут конкурировать с интеловскими предложениями не только с точки зрения производительности, но и по экономичности.

Вместе с этим компания AMD хочет представить семейство Athlon II X2 таким образом, как будто это – более простой и дешёвый, нежели Phenom II X2 500, процессор. Именно поэтому тактовые частоты этого семейства процессоров будут ниже, как, впрочем, и цены: например, старшая модель Athlon II X2 250 имеет официальную стоимость 87 долларов – на 15 долларов дешевле Phenom II X2 550. Однако, глядя на различия между этими процессорами, невозможно однозначно сказать, что Athlon II X2 200 хоть в чём-то качественно уступает Phenom II X2 500. Для большей наглядности давайте сопоставим характеристики новых двухъядерников: Phenom II X2 серии 500 и Athlon II X2 200.



По нашему мнению, и то, и другое семейство процессоров представляет собой двухъядерные решения одного класса. А то, что Athlon II X2 и Phenom II X2 одинаково совместимы с новой платформой Socket AM3 делает все эти недорогие процессоры отличным локомотивом для продвижения данной платформы на рынок, интерес к которой, на фоне снижения цен на DDR3 SDRAM, безусловно, будет только расти. Тем более что в настоящее время на прилавках магазинов появляются недорогие Socket AM3 материнские платы, основанные на наборе логики AMD 770.

Для исследования возможностей процессоров Athlon II X2 200 сегодня мы воспользуемся старшим представителем этого модельного ряда, 3-гигагерцовым Athlon II X2 250. Характеристики этого конкретного процессора видны на приведённом ниже скриншоте CPU-Z.


Используемая нами диагностическая утилита пока что плохо знакома с новым процессорным ядром Regor. Тем не менее, все параметры она отображает верно, и уже сейчас можно обратить внимание на то, что степпинг ядра процессора Athlon II X2 отличается от степпинга ядра Callisto, используемого в Phenom II X2, что ещё раз подчёркивает их различное происхождение.

Кэш-память AMD Athlon II X2

Учитывая, что единственным принципиальным нововведением, сделанным в ядрах процессоров семейства Athlon II X2, оказалось изменение схемы кэш-памяти, мы решили уделить ей немного дополнительного внимания. Как мы выяснили в нашем обзоре первых процессоров Phenom II , при внедрении технологического процесса с нормами производства 45 нм инженеры AMD не стали вносить никаких изменений в алгоритмы работы кэша. В результате, кэш-память процессоров Phenom II, основанных на ядре Deneb, работает с абсолютно той же скоростью, что и кэш-память процессоров Phenom первого поколения. Однако ядро Regor может таить в себе некоторые сюрпризы, ведь в нём кэш второго уровня вдвое увеличился в размере.


Phenom II X2 (Callisto)


Athlon II X2 (Regor)


Впрочем, несмотря на это, ассоциативность L2 кэша осталась той же, что и была: Athlon II X2, как и Phenom II X2, использует кэш-память второго уровня с 16-канальной ассоциативностью. Это даёт повод ожидать примерное равенство в скорости работы L2 кэша у процессоров Athlon II X2 и Phenom II X2. Преимущество же более вместительного L2 кэша Athlon II X2 при этом будет состоять в более высокой вероятности попадания в него данных.

На практике это выглядит следующим образом.



Phenom II X2 545 (3.0 GHz). Заметьте, Everest неправильно определяет кодовое имя этого процессора.



Athlon II X2 250 (3.0 GHz)


Как и ожидалось, при реальных измерениях мы получили примерно одинаковые скорости работы L2-кэша как у процессоров с ядром Deneb, так и у новинок с ядром Regor. Подсистема памяти Athlon II X2 при этом оказалась чуть-чуть быстрее, что вполне объяснимо отсутствием накладных расходов, связанных с необходимостью поиска данных в кэш-памяти третьего уровня.

Описание тестовых систем

Для полноценного тестирования новых двухъядерных процессоров Callisto и Regor мы решили сравнить их не только с конкурирующими предложениями Intel, но и с предшественниками, предлагаемыми компанией AMD, хоть они и относятся к несколько иному ценовому сегменту. Поэтому при подготовке данного материала нам пришлось использовать три разные платформы.

1. Платформа Socket AM3:

Процессоры:

AMD Phenom II X3 710 (Heka, 2,6 ГГц, 3 x 512 Кбайт L2, 6 Мбайт L3);
AMD Phenom II X2 550 (Callisto, 3,1 ГГц, 2 x 512 Кбайт L2, 6 Мбайт L3);
AMD Athlon II X2 250 (Regor, 3,9 ГГц, 2 x 1024 Кбайт L2).


Материнская плата: Gigabyte MA790FXT-UD5P (Socket AM3, AMD 790FX + SB750, DDR3 SDRAM).
Память: Mushkin 996601 4GB XP3-12800 (2 x 2 Гбайта, DDR3-1600 SDRAM, 7-7-7-20).

2. Платформа Socket AM2:

Процессоры:

AMD Athlon X2 7850 (Kuma, 2,8 ГГц, 2 x 512 Кбайт L2, 2 Мбайта L3);
AMD Athlon X2 6000 (Brisbane, 3,1 ГГц, 2 x 512 Кбайт L2);
AMD Athlon X2 6000 (Windsor, 3,0 ГГц, 2 x 1024 Кбайт L2).


Gigabyte MA790GP-DS4H (Socket AM2+, AMD 790GX + SB750, DDR2 SDRAM).

3. Платформа LGA775:

Процессоры:

Intel Core 2 Duo E7500 (Wolfdale, 2,93 ГГц, 1067 МГц FSB, 3 Мбайта L2);
Intel Core 2 Duo E7400 (Wolfdale, 2,8 ГГц, 1067 МГц FSB, 3 Мбайта L2);
Intel Pentium E6300 (Wolfdale-2M, 2,8 ГГц, 1067 МГц FSB, 2 Мбайта L2);
Intel Pentium E5400 (Wolfdale-2M, 2,7 ГГц, 800 МГц FSB, 2 Мбайта L2).


Материнские платы:

ASUS P5Q Pro (LGA775, Intel P45 Express, DDR2 SDRAM);
ASUS P5Q3 (LGA775, Intel P45 Express, DDR3 SDRAM).


Память: GEIL GX24GB8500C5UDC (2 x 2 Гбайта, DDR2-1067 SDRAM, 5-5-5-15).

Помимо перечисленных комплектующих, все тестируемые платформы включали один и тот же общий набор аппаратных и программных компонентов:

Графическая карта: ATI Radeon HD 4890.
Жёсткий диск: Western Digital WD1500AHFD.
Операционная система: Microsoft Windows Vista x64 SP1.
Драйверы:

Intel Chipset Software Installation Utility 9.1.0.1007;
ATI Catalyst 9.5 Display Driver.

Необходимо отметить, что в рамках данного исследования мы сочли возможным использование полноценной Socket AM3 платформы, оснащённой DDR3 SDRAM, для тестирования сравнительно недорогих двухъядерных процессоров AMD. Такое решение объясняется значительно понизившимися ценами на память этого типа и её активное распространение на рынке.

При этом LGA775 процессоры мы продолжаем тестировать в системе с DDR2 SDRAM, так как использование более высокочастотной памяти с CPU семейств Core 2 Duo и Pentium, чья частота шины не превосходит 1067 МГц, невозможно ввиду ограничений, заложенных в применяемые с ними наборы логики. Тем не менее, при разгоне LGA775 процессоров, где использование памяти, работающей на более высоких, чем 1067 МГц частотах становится возможным, мы заменяли указанную выше плату ASUS P5Q Pro на аналогичную ASUS P5Q3, но, оснащённую слотами для DDR3 SDRAM.

Эволюция двухъядерных процессоров AMD

Двухъядерные процессоры AMD имеют богатую историю: первые CPU под торговой маркой Athlon X2 увидели свет ещё в 2005 году. И, как это ни удивительно, многие подвиды двухъядерных процессоров AMD, выпущенные с того времени, остаются интересны до сих пор и не уходят с прилавков магазинов. Говоря о таких возрастных, но актуальных моделях, мы, прежде всего, имеем в виду, что среди продающихся сегодня процессоров Athlon X2, предназначенных для использования в Socket AM2 материнских платах, встречаются как представители серий 5000 и 6000 со старой микроархитектурой K8, выпущенные с использованием технологических процессов с нормами 90 и 65 нм; так и Athlon X2 7000, основанные на 65-нм ядрах с микроархитектурой K10. Теперь же к ним добавляются процессоры Athlon II X2 и Phenom II X2 с современными 45-нм ядрами, но это совершенно не означает, что старые Athlon X2 в одночасье исчезнут из числа розничных предложений. Двухъядерные CPU, основанные на микроархитектуре K8, продолжают оставаться и по сей день даже в официальном прайс-листе.

Поэтому, проследить эволюционное развитие двухъядерных процессоров AMD очень несложно: большинство представителей разных поколений Athlon X2 всё ещё не стали частью истории. Следующая таблица содержит характеристики основных ядер, применяющихся в CPU, совместимых с актуальным в настоящее время процессорным гнездом Socket AM2 .



Что же принесло компании AMD такое многоступенчатое совершенствование своих продуктов, являющихся, по сути, частью одной и той же платформы? Намного ли быстрее проверенных временем двухъядерных процессоров с 90 и 65-нм ядрами и микроархитектурой K8 станут новые Athlon II X2 и Phenom II X2? Задавшись этим вопросом, мы протестировали все пять перечисленных выше разновидностей процессоров, принудительно установив им одну и ту же тактовую частоту – 3,0 ГГц.





















Прогресс не стоит на месте. С каждым новым ядром (за исключением одного - Brisbane) AMD последовательно улучшала быстродействие собственных процессоров. И всё это привело к тому, что сегодняшняя вершина эволюции – процессоры Phenom II X2 – оказываются примерно на 25 % быстрее первых Athlon X2 в Socket AM2 исполнении, работающих на той же самой тактовой частоте. При этом наиболее значительный прирост скорости произошёл при внедрении микроархитектуры K10(Stars), однако и новинки с 45-нм ядрами не ударяют в грязь лицом. При функционировании на одной и той же тактовой частоте новый Athlon II X2 способен обогнать Athlon X2 серии 7000 на ядре Kuma в среднем почти на 7 %, а Phenom II X2 наращивает величину этого превосходства до 11 %.

Иными словами, появление новых двухъядерных процессоров, выпускаемых по 45-нм технологии, не только открывает перед AMD пространство для дальнейшего увеличения тактовых частот, но и поднимает планку производительности процессоров среднего уровня благодаря усовершенствованиям в микроархитектуре и увеличению вместимости кэш-памяти.

Phenom II X2 против Athlon II X2

Несмотря на то, что глубинные причины появления двух похожих друг на друга семейств двухъядерных процессоров, в общем-то, понятны, целесообразность их одновременного запуска вызывает некоторые вопросы. Ответить на них может помочь сопоставление между собой результатов тестирования Phenom II X2 и Athlon II X2, работающих в идентичных платформах и на одной и той же тактовой частоте – 3,0 ГГц.



В целом, ядро Callisto, обладающее кэш-памятью третьего уровня, показало более высокий результат в подавляющем большинстве тестов. И это полностью соответствует тому, как позиционирует друг относительно друга новые семейства двухъядерных процессоров их производитель: Phenom II X2 будет обходиться потенциальным покупателям примерно на 7-10 % дороже, чем равночастотный Athlon II X2.

Кроме того, достаточно любопытным выглядит и тот факт, что наибольший положительный эффект кэш-память третьего уровня процессора Phenom II X2 даёт в играх и при офисной работе. Именно в приложениях такого характера имеет смысл использовать процессоры серии Phenom II X2 500 в первую очередь. При обработке же медиаконтента, рендеринге и в других счётных задачах наличие L3 кэш-памяти обеспечивает куда меньший выигрыш в быстродействии, поэтому в этих случаях более дешёвые процессоры семейства Athlon II X2 способны похвастать более выгодным сочетанием цены и производительности.

Cреднее же преимущество Phenom II X2 над младшим собратом, работающим на той же самой тактовой частоте, составляет не очень убедительные 5 %. А это означает, что Athlon II X2, имеющий хотя бы на 200 МГц более высокую частоту, уже будет обгонять процессор из более дорогого семейства Phenom II X2. Поэтому, для сохранения стройности в позиционировании продуктов компании AMD придётся тщательно следить за «чистотой рядов» своих новых двухъядерных предложений, и не допускать слишком быстрого роста штатных частот процессоров в модельном ряду Athlon II X2.

Производительность

Общая производительность















С точки зрения теста SYSmark 2007, который оценивает производительность систем при обычной работе, новые процессоры AMD выглядят весьма и весьма заманчиво. Так, Athlon II X2 250 обходит интеловскую новинку в линейке Pentium с процессорным номером E6300, а Phenom II X2 550 на равных борется даже с Core 2 Duo E7500. То есть, и в том и в другом случае новые процессоры AMD уверенно обходят по быстродействию конкурирующие предложения Intel, обладающие более высокой стоимостью. А в свете нашего недавнего сравнения процессоров Ahlon X2 и Pentium , можно говорить о том, что благодаря переводу на 45-нм технологический процесс, AMD действительно возвращается на рынок двухъядерных процессоров среднего уровня.

Однако, как можно заметить, новые процессоры Athlon II X2 и Phenom II X2 таят в себе скрытую угрозу для трёхъядерных процессоров AMD. Благодаря высокой тактовой частоте эти двухъядерные модели оказываются быстрее трёхъядерного собрата Phenom II X3 710, который, к слову, позиционируется AMD в качестве процессора более высокого уровня, выступающего конкурентом для серии Intel Core 2 Duo E8000.

Анализ результатов, показанных новинками в различных сценариях SYSmark 2007, позволяет сделать и ещё несколько интересных выводов. Например, соотношение скоростей CPU в подтесте Productivity позволяет говорить о том, что для обычной офисной работы очень важной характеристикой процессора является объём его кэш-памяти, объём которой зачастую оказывается значимее, чем тактовая частота. Зато при работе с видеоконтентом процессор Athlon II X2 250 без L3 кэша показывает даже более высокую скорость, чем Phenom II X2 550. Ещё один интересный случай – это работа в программах 3D моделирования. В таких задачах, несмотря на общее отставание в других сценариях, с сильной стороны показывают себя процессоры Intel, обгоняющие не только двухъядерные новинки AMD, но и даже трёхъядерный CPU нового поколения Phenom II X3 710.

Игровая производительность












Весьма достойно новые двухъядерники AMD выступают и в играх. В особенности это касается Phenom II X2 550, который, благодаря своему L3 кэшу, обгоняет не только Pentium E6300 и Core 2 Duo E7400, но зачастую и Core 2 Duo E7500. Благодаря этому Phenom II X2 550 может считаться превосходным недорогим двухъядерным игровым процессором. Что же касается Athlon II X2 250, то его выступление в игровых приложениях оказалось более бледным, чем у старшего собрата. Однако своего 65 нм предшественника, Athlon X2 7850, он обгоняет значительно – на 13-17 %. Правда, до уровня производительности процессоров Core 2 Duo новый Athlon II X2 250 всё-таки не дотягивает.

Кроме того следует оговориться, что многие современные игры уже достаточно эффективно могут задействовать более чем два процессорных ядра. Именно поэтому трёхъядерный Phenom II X3 710, работающий на частоте 2,6 ГГц, в ряде случаев может предложить лучшую производительность, чем двухъядерные трёхгигагерцовые CPU с аналогичной микроархитектурой.

Производительность при кодировании аудио и видео









Кодирование mp3 аудио в программе Apple iTunes происходит значительно быстрее, если сердцем системы является процессор Intel. Здесь новым двухъядерникам AMD не помогает ни увеличенный кэш, ни микроархитектура K10 (Stars). Зато при кодировании видео и с помощью кодека DivX, и с использованием набирающего популярность x264, процессоры Athlon II X2 и Phenom II X2 способны похвастать относительно неплохой скоростью. Фактически, благодаря наконец-то вышедшей на достойный уровень тактовой частоте, новинки вполне могут поспорить за пальму первенства с представителями серии Core 2 Duo E7000. Кстати, обратите внимание, что задачи кодирования медиаконтента относятся к таким приложениям, которые достаточно индифферентно подходят к объёму и структуре кэш-памяти. А решающее значение здесь играет именно тактовая частота.

Прочие приложения



Мы уже неоднократно обращали внимание на относительно невысокую производительность процессоров AMD при выполнении финального рендеринга, в особенности в популярном пакете 3ds max. С появлением в процессорах AMD новых 45-нм ядер ситуация не изменилась. Старшая из сегодняшних новинок, Phenom II X2 550, только и может похвастать тем, что её быстродействие достигло уровня производительности бюджетного процессора Intel Pentium E5400.О младшем же Athlon II X2 говорить и вообще стыдно. Таким образом, в данном случае конкурировать с Core 2 Duo могут только лишь трёхъядерные процессоры AMD.



Хотя Folding@Home также относится к счётным задачам, результаты новых двухъядерников AMD здесь оказываются немного лучше. Athlon II X2 250 работает наравне с Pentium E5400, а Phenom II X2 550 «дотягивает» по скорости до Core 2 Duo E7400.



При выполнении арифметических расчётов средствами Microsoft Excel новые двухъядерные процессоры AMD продолжают показывать удручающую скорость. Также как и в 3ds max, достойной альтернативой двухъядерным процессорам Intel на сегодняшний день здесь могут стать только трёхъядерные Phenom II X3.



Не лучшим образом складываются дела и в Adobe Photoshop. Как можно заключить из результатов, новые двухъядерные процессоры Phenom II X2 и Athlon II X2 способны решить проблемы AMD с производительностью процессоров среднего уровня далеко не всегда. Сохраняется достаточно большое количество популярных задач, где продукты AMD существенно уступают процессорам Intel, и корни такого положения дел кроются в слабых сторонах микроархитектуры K10 (Stars). Особенно досадно, что на корректировку ситуации в таких приложениях в обозримом будущем надеяться не приходится.



Зато новые процессоры, построенные на ядрах, производимых по технологическому процессу с нормами 45-нм, могут похвастать высокой скоростью компрессии данных в архиваторах. Результаты тестов в WinRAR –яркая тому иллюстрация. Опережает процессоры Core 2 Duo серии E7000 даже Athlon II X2 250. Phenom II X2 550 же по сравнению со своим младшим собратом демонстрирует ещё на 11 % более высокий результат.

Энергопотребление

Предыдущие тестирования показали, что с современными двухъядерными процессорами Intel предложения AMD, основанные на ядрах, производимых по 65-нм технологическому процессу, тягаться не в состоянии. Кажется, выпуск компанией AMD свежих серий CPU Phenom II X2 и Athlon II X2 вполне способен переломить эту ситуацию, ведь эти новые процессоры используют заведомо более экономичные полупроводниковые кристаллы, производимые по 45-нм техпроцессу. В особенности это касается именно Athlon II X2, так как в его основе лежит новое ядро Regor с существенно уменьшенной сложностью. К тому же, для этого процессора и сама компания AMD указывает 65-Вт уровень типичного тепловыделения – такой же, как Intel устанавливает для своих двухъядерных моделей.

Именно поэтому к тестированию энергопотребления новинок компании AMD мы подошли с особым интересом. Приводимые ниже цифры представляют собой полное энергопотребление тестовых платформ в сборе (без монитора) «от розетки». Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.5.8. Кроме того, для правильной оценки энергопотребления в простое мы активировали все имеющиеся энергосберегающие технологии: C1E, Cool"n"Quiet 3.0 и Enhanced Intel SpeedStep.



Несмотря на все усилия AMD по снижению энергопотребления своих платформ и внедрение технологии Cool"n"Quiet 3.0, которая вводит для 45-нм процессоров дополнительные энергосберегающие состояния, системы, построенные на двухъядерных процессорах Intel, остаются слегка более экономичными.



Примерно такую же картину мы видим и под нагрузкой: процессоры Pentium и Core 2 Duo потребляют явно меньше, чем новые двухъядерные модели компании AMD. К сожалению, с точки зрения соотношения производительности на ватт AMD так и не удалось догнать продукты конкурента. В то же время тенденцию к тому, что энергопотребление процессоров AMD постепенно входит в приемлемые рамки, не заметить невозможно. Потребление Phenom II X2 550, который, к слову, построен на изначально четырёхъядерном полупроводниковом кристалле, оказалось почти на 20 Вт меньше, чем у двухъядерного процессора прошлого поколения, Athlon X2 7850.

Но гораздо сильнее впечатляет потребление платформы с процессором Athlon II X2 250. 65-ваттный тепловой пакет ему присвоен совершенно не зря. Под нагрузкой энергопотребление платформы с этим процессоров всего на 10 Вт превышает аналогичную характеристику системы, построенной на Core 2 Duo E7500. А это значит, что с точки зрения электрических характеристик Athlon II X2 250 вполне можно сопоставлять с Core 2 Duo серии E8000, что для AMD является существенным достижением.

Тем не менее, пока что о каких-то особых успехах компании AMD в деле создания двухъядерных процессоров, эффективных с точки зрения соотношения производительности и энергопотребления говорить не приходится. Впрочем, пока что AMD не исчерпала все свои возможности. В ближайшее время компания собирается представить ещё более экономичные двухъядерные процессоры на базе ядра Regor, отличающиеся от рассматриваемого сегодня Athlon II X2 250 более низким TDP, составляющем 45 Вт.

Разгон

Ещё один аспект практического исследования новых двухъядерных процессоров AMD, который мы не могли оставить в стороне – это разгон. Дело в том, что появление новых ядер, при производстве которых используется технологический процесс с нормами производства 45 нм, вернул к продукции компании AMD интерес энтузиастов. Новые процессоры класса Phenom II стали очень неплохо разгоняться, особенно в сравнении с их предшественниками. И хотя мы знаем, что предел разгона процессоров, основанных на ядре Deneb и его производных при использовании воздушного охлаждения, проходит в районе 3,7-3,8 ГГц, мы попробовали разогнать попавшие в нашу лабораторию экземпляры Phenom II X2 550 и Athlon II X2 550. В качестве кулера в наших экспериментах использовался сравнительно старый, но хорошо себя зарекомендовавший Scythe Mugen.

В первую очередь на тестовый стенд отправился Phenom II X2 550. Заметим, что этот процессор относится к классу Black Edition, а потому его разгон можно выполнять простым изменением коэффициента умножения, который не блокируется производителем.

Честно говоря, мы не ожидали от этого процессора результатов разгона, существенно отличающихся от тех, что мы получали при испытаниях Phenom II X3 и Phenom II X4. Но, тем не менее, этот процессор смог нас немало удивить. Дело в том, что при повышении напряжения питания на 0,15 В выше номинала (до 1,475 В) он смог функционировать при частоте 3,98 ГГц. Стабильность работы в этом режиме подтверждалась тестированием при помощи утилиты LinX, сурово нагружающей процессор исполнением кода Linpack.

Это – очень неожиданный результат, идущий вразрез с теми достижениями, которые нам удавалось получить ранее, при разгоне процессоров AMD на ядрах Deneb и Heka. Однако, к сожалению, радость была недолгой, и как показало дальнейшее тестирование производительности, несмотря на прохождение в этом режиме многих «тяжёлых» процессорных тестов, система оказывалась нестабильной в 3D приложениях, в том числе и играх.

Поэтому, нам пришлось снизить достигнутую частоту и достаточно сильно. Безоговорочно стабильной работой Phenom II X2 550 смог похвастать только при частоте 3,8 ГГц.



Как видно по скриншоту, напряжение питания CPU было увеличено до 1,475 В. Второе процессорное напряжение, относящееся к CPU NB, при разгоне не изменялось, так как даже его повышение не позволяло увеличить частоту встроенного в процессор северного моста выше штатных 2,0 ГГц. Уже при 2,2 ГГц у тестового процессора начинались проблемы с памятью. В итоге, несмотря на многообещающее начало, процессор Phenom II X2 550 повёл себя почти так же, как и его старшие собратья. Очевидно, что использование того же самого полупроводникового кристалла, как и в Phenom II X3 и Phenom II X4, предопределило результаты разгона этого процессора.

Другое дело – Athlon II X2 250. Этот процессор базируется на действительно уникальном полупроводниковом ядре, которое пока что не используется ни в каких иных процессорах. А поскольку это ядро имеет меньшую площадь и меньшее расчётное тепловыделение, от него можно ожидать определённых сюрпризов и в части разгона.

Впрочем, принципиально отличающихся результатов мы не получили. При повышении напряжения на 0,175 В (до 1,5 В) этот процессор смог стабильно работать при частоте 3,9 ГГц – и это оказалось пределом.



Заметим, что, так как Athlon II X2 250 не относится к классу Black Edition, его разгон выполнялся за счёт наращивания частоты тактового генератора, которая в результате достигла 260 МГц. Тут, кстати, на руку нам сыграло отсутствие в процессоре L3 кэша: благодаря этому Athlon II X2 250 достаточно спокойно отнёсся к ускорению встроенного в него северного моста, и нам даже не пришлось снижать соответствующий множитель. Итогом разгона стало увеличение его частоты до 2,6 ГГц, с чем он прекрасно справился с небольшим повышением своего питающего напряжения на 0,1 В.

В итоге, Athlon II X2 250 проявил себя немного более дружественным к разгону процессором, чем его старший собрат, Phenom II X2 550, даже несмотря на то, что к оверклокерской серии «Black Edition» он не относится. Конечно, по результатам исследования первых экземпляров какие-то выводы делать рано, но, похоже, ядро Regor действительно обладает слегка лучшим частотным потенциалом, нежели Deneb и его производные - Heka и Callisto.

Дополнить сказанное мы бы хотели небольшим количеством тестов. Дело в том, что после разгона нам захотелось сравнить производительность Phenom II X2 550 и Athlon II X2 250 между собой, а также и с быстродействием двухъядерных процессоров Intel, также работающих во внештатном режиме. Поэтому, приведённые ниже диаграммы содержат показатели производительности следующих разогнанных процессоров:

AMD Phenom II X2 550 на частоте 3,8 ГГц = 19 х 200 МГц. Память – DDR3 1600 с таймингами 7-7-7-20;
AMD Athlon II X2 250 на частоте 3,9 ГГц = 15 x 260 МГц. Память – DDR3 1386 с таймингами 6-6-6-18;
Intel Pentium E5400 на частоте 4,0 ГГц = 12 x 333 МГц. Память – DDR3 1333 с таймингами 6-6-6-18;
Intel Pentium E7400 на частоте 4,0 ГГц = 10 x 400 МГц. Память – DDR3 1600 с таймингами 7-7-7-20.

Заметим, что частота разгона 4,0 ГГц для процессоров Intel была выбрана как наиболее типичный результат, легко достижимый при воздушном охлаждении.





















Тестирование быстродействия показало, что для использования в разогнанных системах более привлекательными решениями являются двухъядерные процессоры Intel. Даже по сравнению с новыми 45-нм процессорами компании AMD они способны предложить лучший оверклокерский потенциал, более высокие итоговые частоты и, как результат, более быструю работу в разогнанных системах. Впрочем, ситуация для процессоров AMD не так уж и драматична, и зачастую разрыв в скорости платформ оказывается не столь уж и велик. Поэтому, учитывая что разгон – это своего рода лотерея, мы не думаем, что энтузиасты должны поставить крест на новых двухъядерных предложения AMD.

В то же время выбрать из рассмотренных продуктов AMD более оптимальный вариант для разгона достаточно сложно даже после знакомства с тестами. Несмотря на то, что нам удалось повысить частоту Athlon II X2 250 сильнее, чем у Phenom II X2 550, он не смог продемонстрировать однозначно лучший результат. Ведь L3 кэш, имеющийся в Phenom II X2, в ряде случаев оказывается куда более важен, чем высокая тактовая частота.

Включение заблокированных ядер

Думается, нет нужды во всех подробностях напоминать нашим читателям главную приятную неожиданность, сопроводившую выход трёхъядерных процессоров Phenom II X3. Поскольку эти процессоры использовали в своей основе тот же четырёхъядерный полупроводниковый кристалл, что и их собратья семейства Phenom II X4, внезапно оказалось, что существует недокументированная возможность для включения деактивированного ядра и превращения трёхъядерного процессора в четырёхъядерный. Причём, что особенно приятно, эта процедура не требует никаких аппаратных модификаций, достаточно лишь активации опции BIOS, отвечающей за работу технологии Advanced Clock Calibration (ACC). Конечно, четвёртое ядро успешно включается не во всех процессорах, а только в тех, в основе которых используется полноценный полупроводниковый кристалл без брака. К счастью, для первых партий Phenom II X3 вероятность получения «удачного» процессора была достаточно велика, и трюк с увеличением числа ядер в Phenom II X3 существенно поднял популярность этого продукта AMD.

Пройдёт ли подобный номер с двухъядерными процессорами – вопрос, волнующий многих энтузиастов. Давайте разберёмся.

В первую очередь необходимо напомнить, что говорить о включении заблокированных ядер в двухъядерных процессорах имеет смысл только применительно к Phenom II X2. Ведь его младший собрат Athlon II X2 использует изначально двухъядерное ядро, в котором нет никаких заблокированных частей.

Во-вторых, с момента выхода Phenom II X3 в ситуации с реализацией технологии Advanced Clock Calibration в BIOS многих материнских плат кое-что поменялось. Компания AMD не стала спокойно взирать на ликование энтузиастов и попыталась добиться от производителей плат обновления микрокода с тем, чтобы возможности разблокирования были ликвидированы. Но, к счастью, желание AMD удовлетворили далеко не все компании. Например, новые версии BIOS используемой нами в тестах материнской платы Gigabyte MA790FXT-UD5P получили дополнительную опцию, позволяющую выбрать – какой вариант микрокода использовать: новый, без возможности включения ядер, или старый.



Эта опция называется EC Firmware for Advanced Clock Calibration, и её установка в положение Hybrid с последующей активацией Advanced Clock Calibration позволяет включать ядра, как и раньше. Причём, к нашей великой радости, мы можем сообщить, что этот метод работает не только для Phenom II X3, но и для новых Phenom II X2 тоже.

Так, наш экземпляр Phenom II X2 550 позволил активировать оба заблокированных ядра и в мгновение ока превратился в полноценный четырёхъядерный процессор. Который, кстати, тут же удалось разогнать до 3.8 ГГц.



Иными словами, двухъядерный Phenom II X2 550 легко может оказаться высокоскоростным четырехъядерным процессором. Но может и не оказаться – всё здесь, естественно, зависит от того, какой полупроводниковый кристалл лежит в основе конкретного экземпляра: полнофункциональный с заблокированными ядрами, или же всё-таки с браком. Причём, учитывая тот факт, что свои двухъядерные процессоры компания AMD собирается продавать по очень демократичным ценам, вероятность благоприятного исхода разблокирования ядер в двухъядерных моделях представляется нам крайне невысокой. Скорее всего, удачные экземпляры процессоров Phenom II X2 будут попадаться достаточно часто только в первых поставках. Поэтому, если вы всерьёз надеетесь на получение «счастливого» двухъядерника, то с покупкой рекомендуем не тянуть.

Кроме того, не следует забывать и о том, что для успешной разблокировки Phenom II X2 требуется не только удачный процессор, но и подходящая материнская плата, обладающая возможностью включения ACC «в старом стиле», число которых под давлением AMD неуклонно сокращается.

Кстати, следует отметить и тот факт, что от настоящих Phenom II X4 разблокированный Phenom II X2 всё-таки отличается. Во-первых, он определяется материнской платой как неизвестный науке процессор с названием Phenom II X4 B50. И, во-вторых, также как в случае и с трёхъядерными процессорами, разблокировка ядер приводит к неработоспособности процессорных термодатчиков.

Выводы

К сожалению, мы всё ещё не можем говорить о том, что компании AMD удалость безоговорочно превзойти своего основного конкурента хоть в чём-нибудь. Но это совершенно не означает, что новые двухъядерные процессоры не удались. Напротив, на фоне своих предшественников Phenom II X2 и Athlon II X2 выглядят более чем революционно. Если ранее двухъядерные процессоры AMD могли противопоставляться только младшим представителям бюджетной серии Intel Pentium, да и то с определёнными оговорками, то теперь можно говорить, что среди предложений AMD появились вполне достойные двухъядерники, закрывающие ценовую категорию от 80 до 100 долларов.

Среди новинок особенно привлекательно смотрятся процессоры Phenom II X2, которые несколько раз на протяжении тестирования вызывали у нас возгласы восхищения. Среди главных положительных моментов следует отметить высокую (для своей цены) производительность этих процессоров в играх, офисных приложениях и при кодировании видео, а также существующую ненулевую вероятность разблокировки двух дополнительных ядер. Эти качества делают Phenom II X2 весьма привлекательным предложением, даже несмотря на сравнительно высокое для двухъядерных процессоров энергопотребление и не самые лучшие результаты разгона. Иными словами, благодаря Phenom II X2 компания AMD имеет реальный шанс потеснить на рынке некоторые модели конкурирующих процессоров семейства Core 2 Duo.

Правда, определённое беспокойство вызывает доступность этих моделей. Использование в их основе четырёхъядерных полупроводниковых кристаллов Deneb делает производство таких двухъядерников маловыгодным мероприятием для AMD. Поэтому, скорее всего, для их изготовления в основном будет использоваться отбраковка от выпуска трёхъядерных и четырёхъядерных процессоров. А это значит, что объёмы поставок Phenom II X2 будут напрямую зависеть не от спроса, а от качества 45-нм технологического процесса и объёмов производства старших моделей процессоров. Именно поэтому следует быть морально готовыми к тому, что на рынке будет ощущаться некоторая нехватка Phenom II X2, влекущая за собой нежелательный рост цен.

Роль же воистину массового двухъядерного решения компания AMD возлагает на другое семейство процессоров – Athlon II X2. А оно в сравнении с Phenom II X2 имеет заметные слабые стороны. Эти процессоры используют собственный двухъядерный полупроводниковый кристалл Regor, лишённый кэш-памяти третьего уровня. В результате, производительность Athlon II X2 в целом ряде приложений оказывается существенно ниже. Фактически, можно даже говорить о том, что процессоры данного типа способны составить реальную конкуренцию лишь старшим представителям серии Pentium, но не младшим Core 2 Duo. Кроме того, Athlon II X2 не преподносит и никаких подарков вроде возможности активации заблокированных ядер.

Впрочем, в сравнении с Athlon X2 прошлого поколения новое семейство Athlon II X2 всё равно является огромным шагом вперёд. Эти процессоры предлагают неплохой разгонный потенциал, гораздо более низкое энергопотребление и, конечно же, возросшую производительность. При этом очевидно, что на достигнутом AMD останавливаться не собирается, и серия Athlon II X2 вскоре получит дальнейшее развитие как в сторону роста тактовых частот, так и в сторону снижения энергопотребления и тепловыделения.

Ну и, конечно же, мы не можем отрицать того факта, что для продвижения Phenom II X2 и Athlon II X2, как и всех других своих процессоров, построенных на 45 нм ядрах, компания AMD выбрала чрезвычайно привлекательную с потребительской точки зрения ценовую политику. Она подчиняется очень простому правилу: любые модели Phenom II и Athlon II предлагают на данный момент более высокое среднее быстродействие, нежели процессоры Intel аналогичной стоимости.

Другие материалы по данной теме


Дешёвые двухъядерники: AMD Athlon X2 против Intel Pentium
Новый степпинг Intel Core i7: знакомимся с i7-975 XE
Intel Core 2 Duo под ударом: обзор процессора AMD Phenom II X3 720 Black Edition

AMD убрала суффиксы количества ядер X2, X3 и X4 из логотипа, вместо этого сменив номенклатурный номер: у моделей 9000 четыре ядра, а у грядущих трёхъядерных будет номер 7000.

Год для AMD выдался непростым. Не только процессор Phenom, которого так долго все ждали, вышел на существенно меньших тактовых частотах (2,3 ГГц вместо 3 ГГц), но и в текущем степпинге ядра Barcelona выявили неприятную ошибку. Обойти её можно, но только обновлённый степпинг позволит AMD продолжить выпуск четырёхъядерных процессоров на серверный сегмент. Да и тот факт, что четырёхъядерный процессор AMD имеет недостаточную производительность, чтобы бороться с Intel на high-end сегменте, тоже не помогает. Вследствие всех этих проблем AMD пришлось изменить стратегию продвижения продуктов и позиционировать процессор вместе с новой платформой Spider на массовый рынок. Впрочем, несмотря на все проблемы, Phenom не такой плохой, как многие считают, что вы увидите по данному сравнению между Phenom и Athlon 64 X2.

Фактически, у AMD есть немало существенных преимуществ по сравнению с Intel, касающихся обновления текущих систем на четырёхъядерный процессор. Если Intel весьма быстро выпускает новые платформы для каждого нового поколения процессоров из-за изменений требований, то AMD вообще не изменила спецификации Socket AM2. Следовательно, технически возможно установить четырёхъядерный процессор Phenom на материнскую плату Socket AM2, заменив Athlon 64 или Athlon 64 X2, вам понадобится лишь обновление BIOS. Впрочем, это тоже верно не всегда - некоторые материнские платы не справляются с энергопотреблением Phenom (95 или 125 Вт), но большинство материнских плат для энтузиастов можно будет обновить на четырёхъядерный процессор. По крайней мере, в будущем, потому что на данный момент мы смогли установить Phenom только на две "старых" материнских платы из десяти .

Ситуация с модернизацией действительно требует определённого внимания, поскольку AMD и Intel примерно через полгода планируют следующее существенное технологическое обновление. AMD представит Socket AM3, который будет поддерживать память DDR3, а процессоры Intel следующего поколения под кодовым названием Nehalem, наконец, перенесут контроллер памяти на процессор. Учитывая всё это, даже грядущие линейки Core 2 Duo E8000 или Core 2 Quad Q9000 можно рассматривать лишь как промежуточные продукты на пути к следующему поколению, пусть даже они будут обгонять существующие продукты Core 2 примерно на 10%.

17 ноября AMD выпустила на рынок две модели Phenom : Phenom 9500 и 9600, на 2,2 и 2,3 ГГц, соответственно. Они обе имеют тепловой пакет (TDP) 95 Вт, что близко к 105 Вт, заявленным Intel для Core 2 Quad Q6600 (2,4 ГГц) и Q6700 (2,66 ГГц). Все более скоростные модели, которые планируется выпустить в первом квартале 2008 года, будут работать с тепловым пакетом 125 Вт. Ближе к концу 2008 года может появиться версия Black Edition, дружественная к оверклокерам, но не выше топовой частоты 2,3 ГГц. Зато AMD разблокировала множитель, чтобы обеспечить идеальные условия для разгона, и эта версия не должна быть дороже обычной.

Вы сможете установить процессор Phenom практически в любую материнскую плату Socket AM2 на рынке, когда будут решены все проблемы . Даже дешёвые материнские платы поддерживают стандартный тепловой пакет 95 Вт, но для 125-Вт версий нужно использовать платформу для энтузиастов, что верно и для тех случаев, если вы планируете существенно разгонять Phenom. Ситуация с обновлением BIOS пока далека от идеала, поэтому устанавливать Phenom на существующие платы для Athlon не так легко, как обещала AMD. Технически, это тот же самый сокет с 1 000-МГц каналом HyperTransport, но проблемы существуют.

Микроархитектура Phenom известна под кодовым названием K10, но затем её переименовали в Stars. Самое существенное отличие, которое и повлияло, в основном, на число транзисторов, заключается в кэше L3, который является расширением к двухуровневому дизайну кэша AMD64. Если каждое вычислительное ядро и обладает собственным кэшем L1 для данных и инструкций (по 64 кбайт на каждый), а также 512 кбайт кэша L2, то L3 обеспечивает ещё дополнительные 2 Мбайт быстрого хранилища для всех ядер Phenom.

Это не первый настольный процессор, который появился с кэшем третьего уровня: 3,2-, 3,4- и 3,46-ГГц модели Intel Pentium 4 Extreme Edition, все из которых были построены на 130-нм ядре Gallatin, также включали 2 Мбайт кэша L3 (вместе с 512 кбайт кэша L2). Но, в отличие от кэша L3 у Pentium 4 EE, кэш Phenom третьего уровня работает в качестве буфера для записи данных в оперативную память.

AMD также внесла определённые улучшения в процесс предсказания ветвлений, поскольку так называемый побочный оптимизатор стэка (sideband stack optimizer) обновляет ESP (enhanced stack pointer) без потребления процессорного времени. А префетчер памяти способен загружать данные эксклюзивно в кэш L1, минуя кэш L2 (то есть, не выгружая оттуда данные). Отметим и 128-битную ширину вычислений SSE, а также 32-байтный блок выборки команд. Технология виртуализации существует у AMD несколько месяцев, она входит и в каждый процессор Phenom.

Поддержка 1,8-ГГц протокола HyperTransport 3.0 - последняя функция улучшения производительности, которая была добавлена в Phenom. Если HT 2.0 на 1,0 ГГц поддерживает скорость 8,0 Гбайт/с в обоих направлениях, то HT 3.0 обеспечивает до 20,8 Гбайт/с. Это будет особенно важным в будущем, когда четырём или больше ядрам потребуется обеспечить доступ к другим ядрам, например, для получения данных из памяти или для работы с таким устройством PCI Express, как видеокарта.

Мы были весьма заинтригованы заявлением AMD, что Phenom работает на 25% быстрее в расчёте на такт, чем текущие процессоры Athlon 64 X2. Учитывая, что здесь нет таких архитектурных революций, подобных той, что свершила Intel, перейдя с NerBurst на Core, 25% прирост производительности в расчёте на такт очень существенен. В него подчас даже трудно поверить, именно поэтому нам интересно было внимательнее присмотреться к новому процессору. Мы сравнили Athlon 64 X2 и Phenom 9900 на базовой тактовой частоте 2,6 ГГц, используя только одно ядро.

Процессоры Phenom
Название Тактовая частота Кэш L2 Кэш L3 TDP
AMD Phenom 9700 2,4 ГГц 4x 512 кбайт 2 Мбайт 125 Вт
AMD Phenom 9600 2,3 ГГц 4x 512 кбайт 2 Мбайт 95 Вт
AMD Phenom 9500 2,2 ГГц 4x 512 кбайт 2 Мбайт 95 Вт

Все Phenom выглядят похоже: перед вами наш инженерный образец с разблокированным множителем.